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Abstract

We have computed optical images of the female breast based on analysis of tomographic data obtained from
simulated time-independent optical measurements of anatomically accurate maps derived from segmented 3-D magnetic
resonance (MR) images. Images were segmented according to the measured MR contrast levels for fat and parenchymal
tissue from T1 weighted acquisitions. Computed images were obtained from analysis of solutions to the forward problem
for breasts containing "added pathologies", representing tumors, to breasts lacking these inclusions. Both breast size and
its optical properties have been examined over a range of values, including large and small breasts and optical scattering
lengths smaller and larger than those expected in tissue. In each case, two small simulated tumors (approximately 0.1%
of breast volume) were "added" to the background tissue. Values of absorption and scattering coefficients of the tumors
have been examined that are both greater and less than the surrounding tissue.

Detector responses and the required imaging operators were computed by numerically solving the diffusion
equation for inhomogeneous media. Detectors were distributed uniformly, in a circular fashion, around the breast in a
plane positioned parallel and half-way between the chest wall and the nipple. A total of 20 sources were used, and for
each 20 detectors. Reconstructed images were obtained by solving a linear perturbation equation derived from transport
theory. Three algorithms were tested to solve the perturbation equation and include, the methods of Conjugate Gradient
Decent (CGD), Projection onto Convex Sets (POCS), and Simultaneous Algebraic Reconstruction Technique (SART).
- Results obtained showed that in each case, high quality reconstructions were obtained. The computed images correctly
- resolved and identified the spatial position of the two tumors. Additional studies showed that computed images were

stable to large systematic errors in the imaging operators and to added noise. Further, examination of the computed
 detector readings indicate that images of tissue up to approximately 10 cm in thickness should be possible.

The results reported are the first to demonstrate that high quality images of small added inclusions can be
obtained from anatomically accurate models of thick tissues having arbitrary boundaries based on the analysis of diffusely
scattered light.

1. Introduction

Recently, there has been a significant interest in the possibility of imaging the interior optical properties of thick
tissues using NIR laser sources [1]. Light propagating through tissue is intensely scattered. For thick tissue structures,
such as a breast, this causes the intensity of unscattered photons to become vanishingly small. As a result, image recovery
dorts must consider evaluation of highly scattered photons.

The inverse scattering problem has long been recognized as being notoriously difficult. From electromagnetic
th we learn that solutions to this problem can, in principal, be obtained from formulations derived from Maxwell's
#quation. In practice, however, because of the intense scattering of optical photons in tissue, the computational
omplexity of these approaches quickly renders intractable any serious examination of optical data from tissue. An
ative formulation, also capable of accounting for the effects of scattering, is transport theory. This approach treats
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penetrating photons as particles. The principal advantage of this scheme is its ready ability to treat situations wi
scattering is the dominant mechanism affecting photon migration. The suitability of this formulation under th
conditions, and its related approximation, the diffusion equation, are well known to many who study neutron transg
and has been successfully applied for many years to problems involving reactor shielding and weapons development.

Several years ago, Aronson and Barbour [2,3], described a 3-D image recovery scheme derived from frs
theory that is suitable for examining the interior properties of opaque dense scattering media. The approach consis
tomographic type measurement scheme, similar to that commonly employed in other imaging modalities, and reg
solution of a linear perturbation equation. The principal difference of this method compared to, for example, x-
the use of imaging operators that explicitly take into account the effects of multiple scattering. The physical inte
of these operators is that they represent the spatial probability distribution of photons launched from a source tha
specified detector. Phenomenologically, a map of this distribution looks similar to a cloud. It has fuzzy boarde
some regions more dense than others, usually in the vicinity of the source and detector. Use of these fune
imaging dense scattering media can be considered analogous as to how the straight line paths taken by x-&
evaluated in CT imaging,

Independently, Singer ef al. in 1990 [4] and Arridge ef al. in 1991 [5] also reported formulations deris
transport theory. The approaches of Barbour ef al. [6] and Arridge ef al. [7] require the solution of linear
equations that make use of specified reference states. The numerical methods used here are similar to 2
impedance tomography [8] and the travel-time seismography problem [9]. The principal difference relates
interpretation of the imaging operator. An update of the imaging operator can be attempted, in which case the
can be described as nonlinear. The method of Singer ef al. [4] does not rely on a reference medium, but instead &
to directly recover the image by iteratively updating a propagation matrix based on an analytical approach. Sines
early reports, the use of perturbation methods derived from transport theory has been adopted by several groups [1}.

Recently, we have described an efficient and practical approach for optimizing data collection and anal
strategies for optical measurements involving thick fissue structures [10,11]. The basic approach considers the uss
priors to derive anatomically accurate optical (AAO) models of tissues. This is accomplished by assignment of op
coefficients to tissue types identified from segmented, 3-D MRI images. We choose the MRI method because of
excellent contrast observed for soft tissues. By assigning previously reported values of optical coefficients to idents
tissue types, estimates of the photon distributions in tissues having nonuniform composition and boundaries ca
directly computed. Simulations of tomographic illumination schemes can readily be performed for native tissues
those containing "added pathologies", thereby permitting assessment of the suitability of various data collection as
analysis schemes.

In this study we have extended preliminary reports [10,11] and consider optical models of the female breast ¢
vary in volume and range of absorption and scattering coefficients for the background tissues and simulated tumors. !
each case solutions to the forward problem were computed for simulated tomographic measurements using a tim
independent source. Detector readings and imaging operators were obtained from solutions to the diffusion equation fo
inhomogeneous media. The quality of reconstructed images were examined as a function of the algorithm used an
systematic errors in the imaging operators and added noise to the detector readings.

2. Methods

We have previously derived a linear perturbation model for imaging differences in the optical coefficients for '_
arbitrary medium [6]. Briefly, let the target medium be discretized into J voxels and Ay & be the volume-averag

perturbation of , for example, the absorption cross section in voxel j. Let / be the total number of source—detector pairs
and A¢, be the detector reading for the ith source-detector pair; then Eq. (1) can be written as a system of linear

equations:
AD = WAp,, (1

where:
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The calculation of W, is performed by discretizing the continuous weight function in Eq. (1):
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where K is the total number of discretized directional components and:
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are the averaged Green's function in voxel j and direction component & for the ith source—detector pair. G:t and G; are

also called the normalized direct and adjoint intensities, respectively. K is taken to be 1 in this study, that is, the
integrated intensity over 4 steradians in each voxel was used for weight function calculation.

The inverse problem can also be stated as follows: given a set of source—detector pairs, the perturbed detector
readings A®, and the pre—calculated weight function W, find the perturbation of the macroscopic absorption cross
sections AL, of the target medium.

3-D MR Breast Phantom

A series of 24 sagittal MR breast images were obtained using a GE Signa MR system. The fast spin echo (TR =
4000 msec, TE = 112 msec, 3 mm thickness) technique was used, with and without fat and water saturation., Surface
coils were used, to obtain better uniformity of the field. Figure 1 shows a sagittal section through one such image. This
series of sagittal sections was then used as the reference medium in image reconstructions. Prior to evaluating the MR
data for computation of photon intensities, spatial averaging was performed to yield a 3-D image of dimension 49x35x24.

Each pixel in the digitized MR image had an assigned integer value in the range 1-256. The breast was
segmented into two different tissue types — "fat" and "parenchyma." The segmentation was accomplished via a simple
thresholding technique, in which all MR image pixels possessing image intensities < 128 were assumed to be one tissue
type and all those with image intensities > 128 were assumed to be the other type. Figure2 shows a sagittal section of a
segmented image. Each tissue type was then assigned a set of optical properties — £, and g/, the absorption and reduced
scattering cross-section, respectively. Two "pathologies" were introduced by assigning different 4z, and u! values to
selected voxels in two regions. A schematic of this is illustrated in Figure 3. The values listed in Table 1 identify the
range of optical properties used.  Although the scattering and absorption cross sections of the pathologies both were
perturbed, images were reconstructed according to a model that assumes perturbations in only the absorption cross
sections.

Solutions of the direct problem for 3-D MR breast data were computed using a relaxation code. Relaxation [12]
is a numerical method commonly used to solve the diffusion equation, which is an approximation to the transport
equation. The continuous diffusion equation with inhomogeneous diffusion constant (r) is:

ci}%d’(r,f) = V- [D(r)VO(r,t)] + p,(r)P(r,t) = S(r,1), (13)

SPIE Vol. 2389 / 837

S I



Figure 1 Figure 2

Fat
///
Parenchyma
Sagittal Slice of Breast Segmented
Figure 1. Sagittal slice of female breast. Image shown Figure 2. Illustration of segmentation of one sagittal cut
is one of 24 slices obtained. All were used to compute of MR breat images. The fat and parenchyma tissues
solutions of the forward problem. were segmented using simple thresholding.
Figure 3 Figure 4
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v
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Figure 3. Illustration of position of "added pathologies".
MR image of slice y17 is shown in Figure 1. See Table studies. (A) twenty source locations; (B) twenty detector
1 for description of assigned optical properties used in locations for source S1.

these studies.
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where:
D(r,t) = qué(r,!l,t)an,
S(r,t) = Lxs(r,Q,r)dQ,

1 1
M (0)+p(r)  Hp )+ p(r)X1-g)

Lp,(r,n'.n)nf-nm [[1.(x,cos6)cos Osin 0d6
[ wr.Q-Q)d [[u.(r,cos6)sin .46

D(r) =

g:

and g is the average value of the cosine of the scattering angle. The grid size chosen for a particular computation varied
with the type of optical parameters chosen. In general, an effort was made to choose grid sizes smaller than the largest
value for ps‘l. In some cases, due to computational limitations, this was not practical and larger grid sizes were adopted.
We are aware that this may lead to some errors in the accuracy of the computed results, but for the purposes of these
computations, such errors should not affect the validity of the reconstruction results. Because different grid sizes were
used in the direct problem, the corresponding volume of the breast considered also varied. In effect, we have evaluated a
series of breasts that have identical anatomy but are scaled to different sizes. Table 2 shows the specific parameters used
to compute solutions to the forward problem for each of the breast types examined. For purposes of comparison, results
obtained from direct problems having dimension of 98x70x48 were subsequently spatially averaged to a grid size of

Table 1: List of optical coefficients assigned to segmented MR images.

Type Fat Parenchyma Tumor

Ha Ug Ha Hs Ha Hs

mm-l m-l mm—l mm-l mm—l mm-l
I 0.003 0.20 0.01 030 0.05 0.50
1 0.006 0.40 0.02 0.60 0.10 1.00
111 0.012 040 0.04 0.60 010 1.00
v 0.012 0.40 0.04  0.60 0.01 0.10
v 0.01  1.00 . 003 050 050  3.00
VI 0.01 200 0.03  1.00 0.50  6.00
VI 0.01  4.00 003  2.00 0.50  12.00

Table 2: Parameters used for solution of direct problem
Type Problem Size Voxel Length (mm) A7 (sec) Breast Volume (cm3) Tumor Volume (cmz)

I  98x70x48 175 7x10713 ~1590 116
I  98x70x48 09 7x1078 ~215 016
M  98x70x48 09 7x10713 ~215 016
IV 98x70x48 175 4x107 ~1590 116
V  49x35x24 2.7 4x107"2 ~1730 053
VI 49x35x24 27 15x107!! ~730 053
VII  98x70x48 135 6x 1071 ~730 053
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49x35x24 before attempting image recovery. The tumor size for the direct problem was also scaled such that for the large
size array it measured 6x6x6 and 3x3x3 for the small size array.

A schematic of the tomographic measurement scheme used for data collection is shown in Figure 4. Twenty
sources were placed at the boundary of the breast and twenty detector readings were obtained for each source, for all
reference and pathology—containing media. The position of the sources and detector were confined to a plane located
half-way between the chest wall and nipple, parallel to the chest wall and bisected the tumors. The normalized photon
intensity in each voxel was also recorded for the reference medium in each set for weight matrix calculations.

Image Reconstruction

Three iterative algorithms — (1) projection onto convex sets (POCS) [12], (2) conjugate gradient descent (CGD)
[13], and (3) simultaneous algebraic reconstruction algorithm (SART) [14], all based on the perturbation model, were
used for image recomstruction. POCS is a sequential projection method which reaches the intersection point of L
constraint sets by projecting the current estimate of the solution onto each set Cj (a set which satisfies the ith constraint), |
=1,2, ... ,L, sequentially and iteratively. Letting Ax” represent the estimate at the nth iteration, each step in POCS can
be represented by:
Ax"“ = PL ° PL-]. OLin oPle". 3)

Here, P] represents the projection operator onto C|, such that P;Ax" is the element in Cj that is closest to AX" . Youla

[15] has proved that, as long as the intersection of the constraint sets is not empty, iterative projections onto these sets
will converge to their intersection. The CGD update is computed according to the conjugate gradient direction d™:

T

n-1

> ot
=, g'=—=W .Qar - a,
ANAx

0" = —g" + p'd", where f§, =

nT
g d

w-af
)
where g is the gradient vector, and « is called the step-size, which must be chosen appropriately to guarantee

convergence. Theoretically, this algorithm should converge after a number of iterations less than or equal to the number
of unknowns. The SART algorithm updates the reconstruction as follows:

Aln an w-AI", Ax::+1 - AI” - a"d". an =

AII' = %WU.Ax::
i i g ZWU
AT = AxT 4+ J
J J Zwv

i &)

where i is the source-detector pair index, j the voxel index, and n the iteration number. We chose the SART algorithm
because of its tendency to enhance image features in regions where all the w;; are small.

2-D reconstructions (forcing the image to be symmetric in the direction perpendicular to the plane defined by the
sources and detectors) were performed. Two range constraints were applied: positive range constraint on reconstruction
results and positive range constraint on detector readings. Range constraints on detector readings were imposed prior to
reconstruction, with all the negative readings set to zero: A@, = 0if Ag, < 0. Where indicated, additive white

Gaussian noise was added to the computed A¢@, values. The range constraints on reconstruction results were imposed
after each iteration: Ay, = 0ifAuy, < 0.

3. Results
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Figure 5 shows a plot of the logarithm of computed photon intensities in several sagittal views for a source
directed normal to the tissue in the region of the nipple (left side). The particular case is based on Type V background
conditions. Figures 5a shows the result for the reference medium without added tumors, and 5b for when two tumors are
added. The two darken structures in slice y17 indicate the position of the added tumors. The jagged edge on the left side
of the figures illustrates the detected edge of the tissue for the particular thresholding values chosen and does not represent
any error in solution of the forward problem.

Figure 5

(A) Reference Medium

yl0 yl5 yl7 y20
(B) Medium Containing Two Pathologies

y10 y15 y17 20

Figure 5. Slices displayed were selected from a set of 35 derived from solution of the forward problem. Note the presence of the
added "tumors" in slice y17.

Data shown in Figure 6 are the computed detector responses for each of the background conditions tested for a
source located at position 6. Inspection reveals that, as expected, a large range of intensity values are obtained with the
detector located opposite the source having usually the lowest values. Comparison of these values to allowable source
intensities indicates that only Type VII medium yields values that are are sufficiently low to be effectively unmeasureable.
Background medium Types V and VI are within the range reported for breast tissue [17] and the others represent values
that likely underestimate the transport scattering lengths.

Figure 7 shows the results of 2-D reconstructions using the CGD algorithm for each of the different test media
after 1000 iterations. In all cases both tumors are well resolved and their spatial location is correctly identified. Figure 8
shows the quality of the reconstruction for Types V-VII media as a function of iteration number. Acceptable results are
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seen after only 10 iterations which corresponds to approximately 2 minutes of CPU time using a 486 PC. A compan
of image quality achieved using the different algorithms as a function of iteration number for the Type VI mediu
shown in Figure 9. It is evident that there are considerable differences in image quality with POCS < CGD = Si
Results shown in Figures10 and 11 examine the effect that systematic errors in the weight function have on image qu
as a function of algorithm used. We consider this as it is appreciated that, in practice, knowledge of the correct weig

Figure 6
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Figure 6. Computed surface intensity values for the different assigned values of optical coefficients listed in Table 1 for source
position 6 shown in Figure 4. Values shown correspond simulations in the presence of "added pathologies".

function is itself an unknown. Thus, it is likely that only an approximation can be made. For these computations we have
modeled two types of systematic errors; inaccuracy in assignment of background scattering coefficients and inaccuracy in
estimates of breast size. For the former we used weight functions derived from the Type V medium to evaluate the
detector reading from the Type VI medium and vice versa. Table 1 shows that these media differ only in the values of the
assigned scattering coefficients. Results in Figure 10 show that, with the exception of data computed using the POCS
algorithm, surprisingly good reconstructions are obtained even after only 10 iterations. For the latter we conducted a

Figure 7.
Type I Type Il Type III Type IV
i i g i
& 4 " %




Type VI Type VII

Figure 7. Reconstructed images of MR-segmented data sets with added tumors. Results shown were obtained after 1000 iterations
using the CGD algorithm in the absence of added noise. See Tables 1 and 2 for listing of optical and other parameters for solution of
the forward problem.

Figure 8.
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Type VII
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Figure 8. Reconstructed images obtained for Types V-VII media in the absence of added noise after the indicated
iterations using the CGD algorithm.
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Figure 9 Reconstructed images obtained of Type VI media using the CGD, POCS and SART algorithms in the absence of added noise
after the indicated number of iterations.

Figure 10.
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SART
WsD6 W6D5 Ws5Dé6 W6D5

Figure 10. Effect of systematic error in weighting functions. Reconstructed images obtained are for Types V and VI media
using the CGD, POCS and SART algorithms in the absence of added noise after 10 and 1000 iterations. Abbreviations used: W.
weight function computed for Type V media used to evaluate detector readings from Type VI media.; W6D5, weight function for Ty
VI media and detector readings from Type V media.

Figure 11.
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Figure 11. Reconstructed images obtained using the SART algorithm after 100 iterations. Abbreviations used: W3D4,
weight function for Type III media used to evaluate detector readings from Type IV media; W4D3, weight functions for
Type IV and detector readings from Type III; similar definitions for W5D6, and W6D5. A. No added noise; B. No added
noise to left two panels, 0 dB added noise to right two panels.

Figure 12.
Type I Type 1 (3000 iter) Type Il Type 11
Type IV Type V Type VI Type VII

Figure 12. Reconstructed images for Types I-VII media after 100 or 3000 iterations with the SART algorithm in the presence of 0 dB
added noise, Reconstructed images were obtained using the appropriate weighting functions for the respective media.

similar study, except weight functions and detector readings were interchanged for Types Il and IV media. These media
have the same background optical coefficients but differ in volume by a factor of eight. Results in Figure 11 show that,
interestingly, errors in assumed volume cause an over and underestimate of the distance separating the tumors. Also
shown in Figure 11 is the effect of added white noise to the detector readings together with systematic errors in the
weighting functions for Type V and VI media. Reconstructions shown in set B demonstrate that computed images are
quite stable to the added noise. Results shown in Figure 12 extend the noise study include all the different background
types examined. Results show that the background types having the lowest values for the scattering cross sections are
most susceptable to added noise. For the noise level examined, this effect, however, can be overcome by additional
iterations.

A quantitative comparison of the reconstructed images obtained using the CGD algorithm in the absence of
added noise is shown in Table III. Values listed correspond to the integrated cross sections computed for the top (data in
columns A) and bottom (data in colums B) tumors. Also listed are the corresponding values when an incorrect weight
function is used.
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Table 11T
Quantitative Comparison of Reconstruction Results

(CGD, No Noise)
Type AZ Actual (mm~1) AE Computed (mm-1)
(No. of Iterations)
10 100 1000

A B A B A B
1 0.24 088 0.10 077 095 076 096
i 0.48 0.16 1.93 0.15 0.20 0.14 0.18
11 0.46 0.18 0.36 0.14 0.33 0.14 0.28
v -0.53 1.17 1.58 1.33 0.78 1.05 0.51
Y 2.47 0.39 0.24 0.34 0.22 0.32 0.24
VI 5.47 0.48 0.34 0.43 0.32 0.48 0.37
VII 10.47 0.41 1.77 0.60 1.88 0.60 1.97
W5D6 5.47 0012 0097 0013 0011 .0013 .0010
W6D5 2.47 158 80 155 80 122 78

4. Discussion

By computing solutions to a one-step linear perturbation equation, we have examined the quality of images
recoverable from anatomically accurate models of the female breast. Use of priors obtained from x-ray CT of MR images
to assist in the reconstruction of functional PET or SPECT images has been described previously [18,19]. Our goal has
been to employ the AAO models both as a means for optimizing algorithm development and data collection, and also to
assess the feasibility of integrating the MR and optical methods.

Solution to the forward problem for the AAO models directly provides an estimate of the limits of tissue size and
optical properties which still allow for a reasonable measurement. Assuming a source strength of betwen 1016.1017
photons per second, results in Figure 6 show that all of the different media types, except VII, should allow for
measurements having acceptable S/N levels. The values of the optical properties examined have intentionally covered a
range that would likely exceed expected values for real tissues at the high and low extremes. To compensate for weak or
relatively weak scattering, we have considered, in two cases, (Type I and Type IV) a very large breast volume (~1.6L). In
both cases, accurate reconstructions were obtained. The computed intensity levels for Type IV are approximately similar
to those seen for the Type VI medium which corresponds to a moderately large breast (~730 cm3) and, as mentioned
previously, whose optical coefficients are in the range reported for breast tissue [17]. Since these intensities are nearly at
the practical limit of measurement, the ability to image breasts having volumes larger than ~730 em3 will require that the
tissue have scattering mean free pathlengths between those for media I'V and VI.

In all cases but medium IV, the values of the optical cross-sections for the "added tumors" exceeded those of the
background medium. For media types I-III, the relative difference was less for scattering than absorption. The cross
sections for medium Type II are double those of medium I. For medium Type III, the values of the absorption cross
section for the background tissues are doubled compared to medium Type II. Media Types V-VII have much larger values
for the scattering cross sections of which the latter two have been doubled and doubled again, respectively, compared to
medium Type V. In all these cases, for which breast size, absolute value of the optical cross sections and their contrast
between the added tumors and background tissues were varied, we observed that good quality reconstructions were
obtained, particularly for the CGD and SART algorithms.

Reconstruction results for the Type [V medium are particularly interesting, A perturbation having smaller values
in the optical coefficients compared to the reference medium will cause some of the Al values to have a negativé values.
As indicated in Methods, we employ positivity constraints on both the detector readings and reconstruction results. Then,
how is it that a seemingly accurate qualitative map of the difference in cross sections can be obtained? The answer lies in
the observation that a difference in the scattering cross section will cause a redistribution of photon intensities, such that
some detectors see more photons and others less. It would appear that sufficient spatial information exists in the more
limited positive Al values to permit an accurate reconstruction. In addition, because we have made no explicit attempt to
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separately compute images for differences in absorption and scattering, we interpret the computed maps as being
prcporﬁonaltoﬂ:ed':ﬂ'u’enceintheabsolmevalueofthetotal cross section.

There are several sources of errors that can influence the reconstruction results. Here we have examined the
effect of systematic errors in the weight functions and added white noise. For the former we have used weight functions
computed from one medium to evaluate detector readings obtained from another. The rationale for this is that whereas
photon distribution will vary with differences in the cross sections, for a specified anatomy the computed intensities
should at least be correlated. Results in Figures 10 show that a doubling of the cross sections did not appreciably
influence the quality of the reconstruction (Type V vs. Type VI). This result is encouraging as it suggests that quantitative
errors in assignment of optical coefficients to an MR map may still allow for a qualitatively accurate reconstruction.
Results in Figure 11, set A, demonstrate errors in assignment of tissue volume also permit computation of a mostly
qualitatively accurate image. In addition, the computed images are also stable in the presence of 0 dB added noise.
Results in Figure 12 extend findings of the noise study to all the background tissue types examined. Interestingly, results
obtained indicate that, seemingly paradoxically, the computed images are increasingly more stable with increased
scattering, Taken together these findings indicate that the computed images are surprisingly qualitatively stable to the
added systematic errors.

Results in Table III show a quantitative comparison of the computed cross sections for the different types of
background media examined as a function of iteration number. Three interesting observations can be made. First is that
even though qualitatively accurate results can be obtained after only 10 iterations, quantitatively, siginficant errors exist.
Second, the error in the computed cross sections becomes increasingly larger for larger differences in the cross sections
between the reference and test media. Third, a two fold systematic error in the weighting functions can produce large
quantitative (approximatley 300 fold) error in the estimated cross sections.

In summary, results reported here directly demonstrate the capability of computing accurate reconstructions of
small inclusions (<0.1% breast volume) embedded in anatomically accurate models of the female breast based on analysis

of diffusely scattered light.
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