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Abstract 
In this report we present a brief outline of our technological approaches to developing a comprehensive 
imaging platform suitable for the investigation of the dynamics of the hemoglobin signal in large tissue 
structures using NIRS imaging techniques.  Our approach includes a combined hardware and software 
development effort that provides for i) hardware integration, ii) system calibration, iii) data integrity checks, 
iv) image recovery, v) image enhancement and vi) signal processing.  Presented are representative results 
obtained from human subjects that explore the sensitivity and other capabilities of the measuring system to 
detect focal hemodynamic responses in the head, breast and limb of volunteers.  Results obtained support 
the contention that time-series NIRS imaging is a powerful and sensitive technique for exploring the 
hemodynamics of healthy and diseased tissues. 

1. Introduction 
Near infrared spectroscopy (NIRS) is increasingly being employed as a noninvasive monitoring tool for the 
investigation of functional states of tissue.  Favoring this development is its ability to probe deep tissue 
structures at wavelengths and intensities that are non-damaging, while employing instrumentation that is 
economical and portable.  Beginning in the late nineteen eighties, our group first recognized that by 
employing array sensing techniques in combination with image reconstruction methods based on physical 
models of light scattering, the NIRS method could be extended to provide for 3D images of optical contrast 
features of tissue.1,2,3  Since these early reports, interest in diffuse optical tomography (DOT) has grown 
steadily to encompass a broad spectrum of investigations and technology development efforts.4,5   

From its earliest inception, DOT was envisioned as a method that could be used to obtain estimates of 
absolute tissue optical properties.3,6,7  Experience has shown that this approach is fraught with technical 
difficulties,8,9 and instead the method appears more suitable to measures of relative changes in optical 
properties.10,11,12  Recognition of this has prompted our group to develop instrumentation suitable to explore 
the temporal dynamics of tissue attributable mainly to naturally occurring or induced  fluctuations in the 
hemoglobin signal.13,14  In this report we provide an updated description of our technology development 
efforts and give examples of results from clinical studies that support the growing evidence of the broad 
based utility of DOT technology to explore relevant functional states and disease processes.  
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2. DOT Technology 

Central to our instrumentation development efforts is the capacity to capture a time series of images.  From 
the outset we have recognized the need to go beyond the obvious aim of simply developing a suitable data 
collection device.  Instead, we have sought to tackle the much larger problem of implementing a full 
spectrum of tools that are necessary to extract useful metrics from dynamic studies.  To this end our 
development efforts have concentrated about six principal tasks:  i) hardware integration, ii) system 
calibration, iii) data integrity, iv) image recovery, v) image enhancement and vi) signal processing. 

2.1. Hardware Integration:  Guiding our approach to developing a suitable tomographic system has 
been a consideration of conflicting demands between hardware performance, expected limits of image 
recovery algorithms, and the response characteristics of the vascular bed.  To explore the third of these in 
any meaningful detail it is necessary to sample temporal states on a time scale sufficiently fast to capture 
the relevant features.  For most studies this means acquiring tomographic data at an image framing rate of at 
least 3 Hz.  Because most studies will require signal acquisition from multiple source positions, it is 
necessary to implement either a fast optical switch (in the case of a time-multiplexing scheme) or a 
frequency encoding scheme which provides for simultaneous multi-site illumination.15  We have chosen the 
former to provide for a more dense sampling of the emerging light field (important for image recovery).  
We have complemented this approach by also introducing a gain switching scheme that allows for signal 
capture over a very large dynamic range (109) together with use of sample-and-hold circuitry to provide for 
parallel data capture.  In practice we have implemented a hybrid illumination scheme wherein time 
multiplexing of the source is combined with frequency encoding techniques to allow for discrimination of 
different illuminating wavelengths (necessary for spectroscopic studies) delivered simultaneously at any 
one site.  The resulting design provides for an image framing rate that is variable, between 2 and 90 Hz, 
depending on the number of source positions employed per image scan.   Our design is also easily scalable 
to allow for the capture of greater source-detector densities beyond our typical 32×32 configuration, should 
the need arise. 

In Figure 1 we show a functional layout of our imager with expanded views of the instrument set-up and 
real-time data display screens.  Depicted is a four-level functionality scheme comprising system hardware, 
system control, data analysis and image display.  The basic system provides for frequency encoding of up to 
four laser diodes, a fast optical switch with incoupling optics, use of various measuring heads, a 
multichannel parallel detector module equipped with adjustable gain control, and a system controller.   

2.2. System Calibration:  A critical functionality of any measuring system is the availability of a robust 
calibration scheme.  In the case of DOT technology, a nontrivial challenge is the expectation that most 
measurements of interest will involve data sampling with a large number of source-detector channels 
(~103).  Our approach has been to devise a scheme wherein expected differences in light delivery and 
collection among the channels can be defined under the same conditions as the experiment.13  This is an 
important consideration for routine system monitoring.  In addition, we have sought to provide for such 
monitoring in ways that readily permit generation of statistical estimates of critical performance parameters.  
The scheme we have developed makes use of expected symmetry from laboratory phantom vessels.  In this 
way deviations from symmetry are used to compute coefficients that account for differences in light 
transmission among the light delivery and receiving optics.  We should note that this approach, which is 
essentially a data driven scheme, differs from a recent report16 that considers system calibration based on 
predictions using physical models of light propagation in scattering media. 
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Figure 1.  Functional layout of our imager 
(Panel A) with expanded views of the instrument 
set-up (Panel B) and real-time data display 
(Panel C) screens.  Depicted is a four-level 
functionality scheme comprising system 
hardware, system control, data analysis and 
image display. 

2.3. Data Integrity:  Ensuring data integrity is of fundamental importance in any physical measurement.  
The challenge for time-series DOT studies is to devise schemes that are appropriate to handle the volume of 
data collected from the many thousands of data channels.  We have treated this problem as comprising three 
components.  The first is basically an issue of optimizing alignment of the optical transmission paths.  To 
facilitate this we have implemented various computer-assisted real-time visualization routines that serve to 
augment alignment of the incoupling optics as well as align light delivery through the optical switch to the 
source fibers.  The second concerns monitoring for stray noise from various causes that can compromise 
data quality.  Here we have implemented dark noise and optical phantom checks that serve to measure 
levels of noise, as a function of gain setting, that are attributable to system electronics, optical incoupling, 
and other factors.   The third data integrity check deals with obtaining an objective measure of the fidelity 
of optode contact at the tissue surface.  Here we have taken advantage of the physical principle known as 
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reciprocity.17  This holds that light entering a scattering medium at one point and exiting at another will 
provide the same signal strength should the positions of the source and receiver be reversed.  In practice this 
is accomplished using a nested, or coaxial, fiber design with light delivery fibers located in the center of the 
fiber bundle surrounded by halo of light collecting fibers.  Using this approach, a comparison of reciprocal 
channels can immediately identify coupling differences and allow for optode repositioning prior to data 
collection. 

2.4. Image Recovery: The image recovery scheme that we first considered made use of a linear 
perturbation model.2,3  As typically viewed, this approach seeks to define the absolute optical properties of a 
scattering medium.  While conceptually possible, this goal if fraught with technical difficulties in defining 
with sufficient accuracy the boundary conditions that coincide with those of measurement.  Several years 
ago, Pei described an image recovery scheme that can evaluate relative changes in the optical properties of 
a scattering medium.11,18  A key element of this algorithm, which is referred to as the Normalized 
Difference Method (NDM), was the demonstration that the resulting scheme is remarkably robust to the 
image degrading effects of systematic mismatches in the boundary conditions.  This scheme has proven 
pivotal in our efforts to develop a practical time-series imaging capability.  The key issue here is basically a 
practical one.  Whereas efforts to recover absolute coefficients can work, they often require use of recursive 
iterative schemes that are computationally expensive.19  In contrast, we have shown that the same 
uncertainties that require the need for these intensive computations have much less impact on image quality 
using the NDM scheme.  Because of this, we believe that much of the relevant dynamics attributable to 
vascular dynamics can be reliably explored using computationally efficient solvers such as the truncated 
SVD method. 

Before leaving this topic, we wish to make one more point.  While an explanation accounting for why the 
NDM scheme can provide improved image results with minimal computational effort was given in Ref. 11, 
its significance has been largely overlooked.  Without belaboring the point, we simply point out that linear 
perturbation theory holds that the information content of the data vector, ∆I, (i.e., difference between 
measured and predicted light field intensities) is in some way proportional to the light field distributions 
produced by the true underlying optical properties of a medium.  We showed that, in practice, the former 
can be severely corrupted by even modest errors in specifying the boundary conditions.  This finding 
suggests that the underlying sensitivity of absolute reconstruction schemes is an inescapable consequence of 
the physics of light transport in scattering media.  We have interpreted this to suggest that system 
calibration and data processing schemes focused on the absolute image recovery problem will prove a far 
more daunting challenge that those that consider measurements based on relative changes. 

2.5.  Image Enhancement: Image quality is often the key factor that determines the practicality of an 
imaging scheme.  Experience with DOT has indicated that images of only modest spatial resolution are thus 
far possible.20  Recently we have pursued a development effort intended to improve achievable image 
resolution using a correction scheme motivated by consideration of the most commonly used method of 
acquiring magnetic resonance imaging (MRI) data.  The essence of MRI is the notion of frequency 
encoding of spatial information.  In the case of MRI, this is accomplished by imposing a gradient in the 
magnetic field across the target to be imaged.  The effect of this is to allow for discrimination between 
signals originating from one position in space and from another, because each is associated with a different 
resonance frequency.  Viewed alternatively, this approach allows for an unambiguous mapping of 
frequency-encoded information from the object domain into the image domain. 

We have recognized that this approach can be extended to the case of time-series DOT imaging.  The idea 
is to somehow identify how information in the object domain is mapped to the image domain.  As in the 
case of MRI, we have reasoned that if each pixel in the object space were somehow encoded with a 
different frequency, then an examination of the Fourier spectrum of each pixel, computed from a time-
series of reconstructed images, should identify precisely where and by how much the true information is 
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being mapped.  Note that our consideration here is a mathematical one, and not physical.  The goal is to 
define, as precisely as possible, just how a particular reconstruction algorithm maps information into the 
image domain.  It should be noted that such details are largely unknown for most algorithms.  We have 
since recognized that the scheme, outlined subsequently, is conceptually similar to the established practice 

of correcting images based on knowledge of a measuring system’s point spread function (PSF).  Because 
we are considering a computational problem, we have adopted the term information spread function (ISP).  
An illustration depicting this scheme is shown in Figure 2.  Panel A shows that most image recovery 
algorithms, especially in the case of DOT, yield blurred images because localized information from the 
object domain is mapped to more than one position in the image domain.  The goal is to implement an 
image filtering scheme that corrects for these inaccuracies, producing, as depicted in Panel B, a final image 
that comes as close as possible to a one-to-one correspondence between object and image pixels.21  To 
derive the mathematical operator designated “Filter” in Fig. 2(B), we begin by assigning a distinct type of 
temporal variability to the optical parameters of each volume element of a target medium.  By numbering 
the volume elements in a consistent manner, every state of the medium can be completely described by a 
vector x0

(i)(r) = [x01
(i)  x02

(i)  … x0M
(i)]T, i = 1, 2, ..., N.  Here, i is the time, or state, index, M is the number of 

volume elements, and N is the number of time steps considered in the filter computation. (As a practical 
matter, N»M gives best results.)  A set of detector data for the spatial distribution of material properties 
represented by x0

(i)(r) is computed (i.e., forward problem), and then the corresponding image xr
(i)(r) is 

reconstructed.  Repeating these operations for all N time steps yields the corresponding M×N matrices 
X0

N(r) and Xr
N(r), where X0

N(r) = [x0
1(r)  x0

2(r)  … x0
N(r)] and Xr

N(r) = [xr
1(r)  xr

2(r)  … xr
N(r)].  Finally, 

the M×M filter matrix F is obtained by solving the linear system X0
N(r) = FXr

N(r).  Subsequently, any 
image yr that is reconstructed using the same volume element pattern and measurement geometry as used in 
the computation of F is corrected by calculating the matrix product Fyr. 
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Figure 2.  Panel A, schematic depicting the action of typical DOT image reconstruction algorithm, which yields 
blurred images because information from each object domain location is mapped to more than one position in the 
image domain.  Panel B, the action of an ideal image-correcting filter, which is to counteract the information 
spreading aspect of the reconstruction algorithm’s action. 

Shown in Figure 3 is an example of the image enhancement capability that can be achieved using the 
temporal encoding scheme outlined here.  For demonstration purposes it is preferable to work with a 
medium whose optical parameters are known, so that the accuracy of the reconstructed images may be 
quantified.  Consequently, the target “tissue” used here was a simulated hemispherical structure containing 
three small absorbing spherical regions embedded in a more weakly absorbing homogeneous background.  
Proceeding from left to right in Fig. 3 are 2D projections of the original, unfiltered reconstructed and 
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filtered reconstructed images, respectively, of the 3D target medium.  Comparison shows that use of the 
filtering technique can significantly improve image quality. 

 
 

       Ideal Model                    Without Filter                      With Filter  

                        
                      x-y plane                           x-y plane                           x-y plane 
 

                         
                       x-z plane                            x-z plane                           x-z plane 
 

                         
                       y-z plane                            y-z plane                           y-z plane 
 
                         

                                                                       
 
 

Figure 3.  Target and reconstructed images of absorption coefficient from simulated data for the case of the 
hemisphere geometry with three inclusions. The first column is the target from different views, the second is the 
reconstructed images without filter correction, and the third is the results with filter correction. In which the 
background scattering and absorption coefficients are, respectively, µs′ = 10 cm-1 and µa = 0.06 cm-1. The 
absorption coefficients in the inclusions are all µa = 0.12 cm-1, while their scattering coefficients are the same as 
that of the background. 
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2.6. Signal Processing: While the preceding capabilities provide for the collection and recovery of an 
image time series, this information by itself is not in the form that many would find particularly useful.  The 
challenge here is the need to explore the four-dimensional image “spacetime” and related data in ways that 
provide for the separation and characterization of information from a complex composite.  Considerations 
here are both mathematical and physiological.  The latter includes the phenomenology of the vascular tree 
and its architecture.  Arteries, veins and microvessels are omnipresent in biological tissues.  In addition, 
each of these elements is modulated by different natural mechanisms, resulting in distinct dynamics.  Thus, 
for instance, the arterial tree is dominated by a cardiac beat frequency caused by ventricular contraction.  
The venous tree exhibits a respiratory frequency caused by rhythmic compression of the inferior vena cava 
due to movement of the diaphragm, and by concomitant rhythmic variations in thoracic pressure.  The 
microvessels undergo oscillations in diameter in response to variations in sympathetic tone, actions of 
circulating hormones (e.g., angiotensin), and local metabolic factors (e.g., nitric oxide).  In addition to these 
naturally occurring dynamics, there are many instances wherein the study of induced dynamics is useful.  
Note that time-series DOT studies offer more than the ability to non-invasively explore states of vascular 
dynamics.  Recall that hemoglobin, which is the principal chromophore affecting the dynamics of near 
infrared light transmission in tissue, is also the principal species responsible for oxygen transport to tissue. 
Thus time-series DOT also allows for the investigation of factors that influence the interaction between 
tissue and its blood supply (i.e., tissue-vascular coupling).   

These considerations reinforce the observation that the architecture of the vascular tree and its modulation 
produce a state such that light passing through tissue anywhere will contain information that has both local 
and systemic origins.  In many instances, it is important to separate these signals, which leads us our the 
next consideration—the spectrum of numerical methods that are suitable for such investigations. 

The field of signal processing is a broad subject encompassing a large number of analysis techniques.  In 
our examination of time-series DOT we find it useful to restrict our consideration to four principal areas: 
time-frequency, time-correlation, rate analysis and signal separation.  To this end we have implemented in 
Matlab a pull-down-menu driven toolbox that provides for these and other operations.22  Our interest in 
time-frequency methods stems for the expectation that many physiological processes are nonstationary,23 
exhibiting a temporally varying frequency structure.  The correlation methods are useful in exploring 
expected relationships among data, especially in cases where time delays can occur.  Rate analysis, as the 
name implies, allows for the determination of how fast responses occur, usually in response to a 
provocation.  Of particular interest in many instances are the use of signal separation techniques, which 
generally speaking represent a class of multivariate statistical methods.  Two sub-categories that we have 
found particularly useful are blind source separation techniques, for cases where prior knowledge of the 
system dynamics is not at hand, and strongly model-based methods, for cases where one seeks to locate and 
quantify specific forms of known behavior in a target tissue.24  The former are exemplified by principal 
component analysis (PCA) and by PCA plus extended temporal decomposition25; the second of these yields 
distinct forms of behavior that are maximally independent.26  The latter are exemplified by general linear 
model (GLM) computations,25 which gives quantitative estimates of the probability that a particular type of 
temporal fluctuation (i.e., a model function) is present in each image pixel, and the percentage of the total 
temporal variance that a model function explains or accounts for in each pixel.  

 

3. Methods 
All experimental data reported on below were collected using a DYNOT system (NIRx Medical 
Technologies LLC., Glen Head, NY) for dynamic DOT.  Depending on the particular application, the 
number of optical fibers used for light delivery and recording was N = 24, 30, or 62.  In all cases the 
sampling rate was approximately 2.5 complete data sets per second.  As outlined above (§2.1), 
measurements were performed at two wavelengths simultaneously.  All measurement data were subjected 
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to the reciprocity-based data integrity checks referred to in §2.3,27 and data from any channel pairs that 
failed to show the expected degree of reciprocity were excluded from subsequent analyses.  Individual data 
channels also can be rejected if they saturate during any part of the measurement, or if the coefficient of 
variation of intensity values recorded during a resting baseline period exceeds a preset threshold. 

All reported images were reconstructed by solving a linear perturbation equation, modified in accordance 
with the NDM (§2.4).  Solutions of the resulting linear systems were computed by using a truncated SVD 
algorithm.28  For the demonstration of the image-correcting power of the temporal encoding technique 
(§2.5), the numbers of image pixels and filter-generating time steps were M = 982 and N = 16384 (i.e., 214), 
respectively; a LU decomposition algorithm was used to solve the linear system X0

N(r) = FXr
N(r).  The 

signal-separation computations (§2.6) that were performed on selected detector and image time series were 
carried out in the manner described 

 

in Ref. 25. 

. Results 

nctional Neuro-

4

4.1  Fu
imaging.  Focal neuronal acti-
vation is expected to produce an 
event-related increase in blood 
flow, causing an increase in 
blood volume with improved 
oxygenation.29,30  An example of 
our ability to record such re-
sponses from the head of an 
adult (motor cortex) in response 
to a box-car finger-tapping para-
digm is shown in Figure 4. 
Illustrated is an event-related 
change in oxy-Hb levels 
paralleling the onset and 
cessation of finger tapping.  
Shown in Figure 5 are results 

from a similar experiment in 
which collected data were 
further processed to yield a 
spatial image of the response.  
Here we show the result 
obtained when the GLM 
technique was applied, with 
the boxcar design as the 
model function, to identify 
where in the image space this 
particular behavior was 
present.  It is seen that the 
boxcar makes a significant 
contribution to the overall 
model fit in only a single, 
highly localized, region that is 
located approximately 0.5-1.0 

 

Figure 4.  Temporal response of the oxy-Hb signal (first principal 
component) during finger-tapping sequence. 
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(a)                                      (b) 
Figure 5.  Each image is a spatial map of the coefficient for the GLM fit of the 
boxcar model function to the pixels’ oxy-Hb time series.  Two views are shown 
for the activation-rest time period.  The t-statistics associated with largest positive 
and largest negative values of the GLM best-fit parameter are +9.25
(p = 3.6×10-19) and  -7.09 (p = 3.6×10-12), respectively.  A = anterior P = 
posterior, S = superior. 
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cm below the surface, a finding is consistent with results from fMRI studies. 

 
4.2.  Optical Mammography 

4.2.1.  Breast Cancer Detection by Transient Induced Hypoxemia.  The detection of focal 
hemodynamic responses has applications to other studies.  Here we have explored our ability to detect a 
solid tumor of the breast by subjecting the tumor to a period of transient hypoxemia, via a simple breath 
hold.  The rationale for this maneuver was that the enhanced metabolic activity associated with a growing 
tumor, combined with a possibly compromised vascular supply, could push the tumor tissue into oxygen 
debt, which would cause a decline in the level of oxy-Hb together with a rise in the level of deoxy-Hb.31  In 
Figure 6 we show a typical time course in the measured normalized levels of oxy-Hb and deoxy-Hb 
obtained before (1 and 2), during (3) and after (4) the breath hold, for the healthy and tumor-bearing 
breasts.  Comparison between the graphs reveals a qualitatively different trend in hemoglobin states during 

the breath hold.  In both graphs, the oxy-Hb and deoxy-Hb levels rose initially upon a breath hold, which is 
the expected response because the associated rise in venous return pressure will cause an increase in tissue 
blood volume.  Following this, in contrast to the trend seen in the healthy breast, the oxy-Hb level in the 
tumor-bearing breast became unstable and then declined.  At the same time, the deoxy-Hb level climbed 
more rapidly than in the breast that did not contain a tumor.  These findings are entirely consistent with the 
well-recognized general finding that solid tumors function on the brink of hypoxemia. 

Figure 6.   oxy-Hb (solid line) and deoxy-Hb (dotted line) time series computed 
from representative (non-simultaneous) dual-wavelength detector readings. 
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In Figure 7 we show an example of how information of the sort in Fig. 6, but extracted from the image time 
series reconstructed from the tomographic measurements, can serve to image the tumor with high contrast.  
The data-analysis protocol was: 1) subject held her breath for approximately one minute; 2) simultaneous 
dual-wavelength measurements were performed at a rate of ~3 Hz during this time; 3) time series of 
absorption coefficient (µa) images, at both wavelengths, were reconstructed; 4) time series of spatial maps 
of oxy-Hb and deoxy-Hb were computed from the µa images for each time point; 5) linear regression 
computations were performed to determine the average rate of change of oxy-Hb and deoxy-Hb in each 
image pixel, within time period 3 (narrow white bar within the gray bar) indicated in Fig. 6; 6) a spatial map 
of the product of the oxy-Hb and deoxy-Hb regression slopes was generated.  For presentation clarity, we 
show only those contour levels that comprise the highest 90% of the computed values (i.e., background 
contrast is <10% of the maximum value shown.  Comparison of this result to the sonogram image of the 
same breast indicates excellent agreement.  The equivalent result obtained from the normal breast (not 
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shown) yielded a spatial 
map that was essentially 
featureless within the con-
trast ranges shown.  These 
findings thus show that 
known disturbances in the 
vascular biology of solid 
tumors can be accurately 
localized from analysis of 
an image time series of the 
hemoglobin signal. 

 
4.2.2 Simultaneous Dual 
Breast Measurement:  
The hemodynamic distur-
bances of the sort shown in 
Figures 6 and 7 suggest that 
enhanced detection capabil-
ity might be realized from a 
simultaneous bilateral meas-
urement.  The rationale here 
is that provocations having 
a central origin, (e.g., a respiratory maneuver) will 
simultaneously influence both breasts, allowing for a 
perfectly time-correlated comparison.  A photograph 
of the measuring head used in these studies is shown 
in Figure 8.  Illustrated are two cup-shaped devices 
composed of black Delrin, designed to 
accommodate up to a “C” size breast.  Each cup can 
be fitted with up to 62 source-detector fibers whose 
position are pneumat-ically adjustable under 
computer control.   In Figure 9 we show an example 
of the parallel response obtained using this device, 
recorded from a healthy volunteer in response to a 
Valsalva maneuver.  Indicated are the relative 
changes seen in the average oxy-Hb, deoxy-Hb and 
total Hb signals computed from the measurement 
array (12 sources, 15 detectors for each breast).  
Inspection reveals that the vascular reactivity of 
blood vessels to the maneuver are highly 
coordinated in both breasts, which is the expected 
response for a healthy individual.  

Tumor 

 
1.00 
 
0.75 
 
0.50 
 
0.25 

Relative 
Contrast 

Figure 7. Right, 3D DYNOT image of tumor identifying imbalance in tissue 
oxygen supply/demand.  Image was produced without need of contrast agents or 
compression.  Left, sonogram image of same breast showing location of tumor. 
Note close agreement in size and shape. 

Figure 8.  Photograph of measuring head used for 
simultaneous dual-breast measurements.  Thirty-one 
source-detector fibers are distributed over the surface of 
each breast. 

Recently we have repeated this protocol on two other subjects.  One was a healthy control, and the other a 
patient diagnosed with bilateral breast cancer.  The mean Hb time series for the former (healthy control) 
subject are qualitatively and quantitatively similar to those in Fig. 9.  In contrast, the latter subject (cancer 
patient) yielded responses that were significantly distorted compared to the healthy subjects and with less 
similarity between the left- and right-breasts.   Most evident was the finding that the peak amplitude of the 
Hb deflections was reduced compared to control subjects, by a factor of ~6.  This finding is consistent with 
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the known increase in tissue oncotic 
pressure that typically occurs in 
tissue structures containing solid 
tumors.  This increase, resulting 
from leakage of fluid from 
incompetent tumor blood vessels into 
the interstitial space, substantially 
limits the ability of veins in the 
affected tissues to distend during 
maneuvers that produce increases in 
intrathoracic pressure. 

4.3 Imaging of Peripheral 

 is instructive to ask where in a two-dimensional cross sectional spatial map 

Hemodynamics:  There are other 
forms of hemodynamic responses 
that can be explored from analysis of 
time-series image data.  One having 
particular relevance to management 
of many disease states are measures 
of peripheral vascular resistance.  
For instance, we have postulated that 
the application of mild venous 
occlusion (60 mm Hg), for example 
to the upper arm, might be sufficient 
to cause distension of the distal 
vascular bed and that the magnitude 
and dynamics of this response would 
correlate with vascular resistance.  
We further postulated that factors 
that affect the latter will impact on 
the former in a quantifiable manner.  
To examine this we performed a 
time-series study on the forearm of a 
volunteer.  The imaging system em-
ploys a pneumatically controlled 
measuring head consisting of 24 
source and 24 detector fibers uni-
formly spaced in a circular array.32  

Data collection was accomplished by fitting the device to a point on the forearm approximately one-third 
the distance between the wrist and elbow.  Also attached was a pneumatic cuff applied to the upper arm, 
and a heating pad surrounding the forearm, proximal to the measuring site.  Shown in Figure 10 is the time 
course of oxy-Hb levels averaged over all measuring sites (24 sources, 24 detectors) with and without 
application of external heat, in response to replicate cycles of mild venous occlusion.  Inspection shows that 
inflation of the cuff results in marked rise in the level of oxy-Hb, which indicates distal pooling of blood.  
More important, we see that the magnitude and dynamics of this response is enhanced by application of 
heat (light curve), which we interpret as a result of a local decrease in peripheral vascular resistance. 

To reinforce this suggestion, it
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Figure 9.  Average concentration change (relative to baseline average 
value) for the separate hemoglobin states and for total Hb, for the left 
(Panel A) and right (Panel B) breasts of a healthy control subject in an 
optical mammography study.  Following a 10-minute baseline period 
(not shown), a sequence of quantitative Valsalva maneuvers was 
performed at intervals of ~5 minutes. 

of the forearm behavior of the type illustrate in Fig 10 might be found.  One approach is to compute a cross- 
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correlation (CC) map between one of the functions 
plotted in Fig. 10 and an image time series 
reconstructed from optical tomographic data.  
Regions where the behavior dominates will have a 
high positive correlations.  An example of this is 
shown in Figure 11.  For comparison purposes we 
also provide a MR map (Panel A) taken from the 
same location as that where the optical measures 
were performed.  It is seen that most of the image 
(Panel B) is strongly correlated with the imposed 
venous modulation.  Shown in Panel C is plot of 
the of the correlation value as a function of time 
delay in this region.  We see that the dependence 
persists, indicating that the response is 
predominantly coherent.  Shown in Panel D is a 
similar plot for a region of significantly reduced 
correlation.  Interestingly, as seen in Panel E, this 
region and the adjacent area to the upper right 
overlay the radius and ulna, suggesting that 
interosseous hemodynamics differs from that of 
surrounding tissue, as of course it does. 

Time points 

On                 Off                   On               Off 

Figure 10.  Time course of computed average 
oxyhemoglobin response to two cycles of mild venous 
occlusion in the forearm.   Dark curve, no heat applied; 
light curve, with heat.   

4.3.1 Image Analysis via Signal Separation Techniques:  The experiment reported on here permits us to 
demonstrate still additional capabilities of dynamic DOT.  For instance, it is clear that the overall vascular 
response is a composite of multiple phenomenologies.  At an elementary level this is evidenced by the 
different natural beat frequencies associated with the principal elements of the vascular tree, as discussed 
above (see §2.6).  It is our view that characterization of the oscillatory behavior of microvessels, in 
particular, with a real-time imaging modality can provide a wealth of functional indicators that will prove 
helpful in clinical diagnosis and management.  These indicators will be derived from the detailed 
knowledge of peripheral hemodynamics that dynamic DOT can provide.  An example of this is shown 
subsequently. Given the known complexity of vascular dynamics, it should be useful to employ signal 
processing techniques that are capable of extracting measures into physiologically meaningful components.  
To accomplish this we have, as stated above (§2.6),  employed several blind source separation techniques.  
Results shown in Figure 12 are an example of use of PCA applied to the experimental data illustrated in 
Fig. 11.  Plotted here are the first two principal components computed from the reconstructed image time 
series for oxy-Hb in the case of four consecutive mild inflation cycles. The dark curve corresponds to the 1st 
principal component (PC) and accounts for approximately 80% of the total signal variance.  The light curve 
is the 2nd PC and accounts for approximately 10% of the variance.  (Note that the plotted functions have 
been normalized to unit Euclidean length (unit sum-of-squares).)  Careful inspection reveals that the 
dynamics of the two functions differ, and that they change from one application of mild venous occlusion to 
the next.  In the case of the 1st PC, we see that it corresponds to oxy-Hb levels increasing almost 
immediately upon cuff inflation.  It is also seen that the magnitude of this response increases modestly 
following the second challenge.  We interpret this component to represent blood volume changes occurring 
in the venous tree, as it is these structures that distend most easily when blood pressure increases.  The 
findings associated with the second PC are more complex.  Early on in the inflation cycle, this component 
corresponds to an initial decline in oxy-Hb level followed by a accelerated increase relative to the 1st PC, 
and that the magnitude of the latter increases markedly in subsequent cuff challenges.  We believe this 
signal originates primarily from the microvascular bed.  The initial decline in oxy-Hb is consistent with 
blood pooling allowing for greater oxygen extraction.  Following this, dilation occurs, perhaps in response 
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to the buildup of local metabolic factors.  
The finding that the rate and extent of 
change in this signal increases in 
subsequent challenges suggests that 
insufficient time had elapsed between 
cycles to allow for complete washout of the 
tissue factors.  Additional support of these 
interpretations can be found in Figure 13, 
which shows spatial maps of the amplitude 
of the 1st and 2nd PCs.  In Panel A we see 
that the signal associated with the 1st PC is 
seen mainly in the periphery (red regions), 
roughly in agreement with the location of 
near-surface veins (see Panel 11A).  In 
contrast, the signal associated with the 2nd 
PC is found mainly in the ventral aspect of 
the forearm, which is dominated by well-
perfused muscle.  These findings reinforce 
results from the other studies demonstrating 
that time-series DOT can define focal 
changes in vascular hemodynamics. 

Figure 11.  Panel A, MR cross section of arm.  Panel B, cross correlation (CC) map between (dark) model 
function in Figure 10 with Hb image time series.  Panel C, overlay of Panel A and B.  Panels D and E, time 
dependence of CC at indicated locations.  (1) Radial artery, (2) radius, (3) interosseous artery, (4) ulna, (5) ulnar 
artery. 
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Figure 12.  1st (light curve) and 2nd (dark curve) PC of 
oxyhemoglobin signal computed for reconstructed image 
time series for four consecutive cuff inflation cycles.
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5. Discu
entral to the management of disease processes is an objective characterization of vascular hemodynamics.  

rstood that significant morbidity and mortality can result from focal disturbances in this 

ornly resisted 

his work was made possible in part by support from the National Institutes of Health under Grants 5R21-
 1R21-DK63692 (SUNY),  R43-CA91725-01-A1 (NIRx), and R41-CA96102 

ss

Figure 13.  Panel A, amplitude map of 1st principal component (PC) of total Hb (82% of 
total variance).  Panel B, amplitude map of 2nd PC of total Hb (10% of total variance).    

ion 
C
While it is unde
parameter, mainly lacking has been the ability to explore such responses in large tissue structures using 
noninvasive imaging techniques.  NIRS imaging, with its marked sensitivity to the hemoglobin signal, and 
availability of economical and portable instrumentation, we believe is an ideal technology to meet this need.  
Full development of this capability will require access to a comprehensive tool set that provides for, in 
addition to flexible strategies for data capture, capabilities that ensure data integrity, system reliability, 
image formation and enhancement, and signal analysis.  Here we have outlined our approach to 
implementing these capabilities, and have presented results from preliminary clinical studies that support 
the contention that NIRS imaging holds the potential for broad-based assessment of focal hemodynamic 
disturbances.  While evident, it is nevertheless deserves emphasis that these capabilities are achievable 
without the need of contrast agents or use of ionizing sources.  Instead, image contrast obtained arises from 
the naturally occurring or induced variations in the light absorption properties of hemoglobin. 

Motivating our development of the NIRS imaging technique to include the temporal dimension is 
appreciation that it can provide for a wealth of functional indicators that have previously stubb
systematic exploration using alternative imaging technologies.  For instance, the results seen in response to 
transient induced hypoxemia of the breast are consistent with a longstanding notion that blood delivery to 
solid tumors is compromised by an underdeveloped vascular network.  While this phenomenon is generally 
recognized, mainly absent are imaging tools capable of providing specific knowledge of the spatial extent 
and magnitude of this aberrant network.  Information of this type could provide a basis for improved 
treatment planning (e.g., drug delivery, radiation therapy).   We also recognize that light passing through 
tissue is encoded with information that is both temporally and spatially convolved.  This argues for the use 
of signal separation techniques.  We further recognize that the underlying connectivity of the vascular tree 
and its known modulation by local and systemic effectors suggests that simultaneous multi-site 
measurements could provide still additional sensitivity to the presence of subclinical disease processes and 
their characterization. 

 
6. Acknowledgments 

T
HL67387-01 (SUNY),

 14



(NIRx); by the New York State Department of Health Empire Clinical Research Investigator Program 
(SUNY); by the US Army under Grant DAMD017-03-C-0018 (NIRx); and by the Stavros S. Niarchos 
Foundation (NYU). 

 
7. References 
 
1 R. L. Barbour, J. Lubowsky, and H. L. Graber, “Use of reflectance spectrophotometry (RS) as a possible 3-
dimensional (3D) spectroscopic imaging technique,” FASEB J. 2, A1772 (1988). 

5 (1991), Birkhauser Verlag Press (11th 

otochemistry and Photobiology 46, 601-608 (1987). 

ng and Computing 26, 289-294 (1988). 

 

,” Medical Physics 28, 1115–1124 (2001). 

 (2001). 
11

5755-5769 (2001). 
12

protocol for imaging dynamic 

2 R. L. Barbour, H. L. Graber, R. Aronson, and J. Lubowsky, “Model for 3-D optical imaging of tissue,”  International 
Geoscience and Remote Sensing Symposium (IGARSS) 2, 1395-1399 (1990). 
3 R. Aronson, R. L. Barbour, J. Lubowsky, and H. L. Graber, “Application of transport theory to infra–red medical 
imaging,” in Operator Theory: Advances and Applications, Vol. 51, pp. 64-7
International Conference on Transport Theory, held in Blacksburg, VA, May 22-26, 1989). 
4 Proceedings of SPIE Vol. 4955 Optical Tomography and Spectroscopy of Tissue V, B. Chance, R. R. Alfano, B. J. 
Tromberg, M. Tamura, and E. M. Sevick-Muraca, Eds., SPIE Press, Bellingham, WA, 2003. 
5 Proceedings of SPIE Vol. 5138 Photon Migration and Diffuse Light Imaging, D. A. Boas, Ed., SPIE Press, 
Bellingham, WA, 2003. 
6 B. C. Wilson, M. S. Patterson, and S. T. Flock, “Indirect versus direct techniques for the measurement of the optical 
properties of tissues,” Ph
7 M. Cope and D. T. Delpy, “System for long-term measurement of cerebral blood and tissue oxygenation on newborn 
infants by near infra-red transillumination,” Medical and Biological Engineeri
8 B. W. Pogue, K. D. Paulsen, C. Abele, and H. Kaufman, “Calibration of near–infrared frequency–domain tissue 
spectroscopy for absolute absorption coefficient quantitation in neonatal head–simulating phantoms,” J. Biomedical
Optics 5, 185-193 (2000). 
9 V. Ntziachristos and B. Chance, “Accuracy limits in the determination of absolute optical properties using time–
resolved NIR spectroscopy
10 R. L. Barbour, H. L. Graber, Y. Pei, S. Zhong, and C. H. Schmitz, “Optical tomographic imaging of dynamic 
features of dense-scattering media,” J. Opt. Soc. Am. A. 18, 3018-3036

 Y. L. Pei, H. L. Graber, and R. L. Barbour, “Influence of systematic errors in reference states on image quality and 
on stability of derived information for DC optical imaging,” Applied Optics 40, 

 A. Y. Bluestone, G. Abdoulaev, C. H. Schmitz, R. L. Barbour, and A. H. Hielscher, “Three-dimensional optical 
tomography of hemodynamics in the human head,” Optics Express 9, 272-286 (2001). 
13 C. H. Schmitz, H. L. Graber, H. B. Luo, I. Arif, J. Hira, Y. L. Pei, A. Bluestone, S. Zhong, R. Andronica, I. Soller, 
N. Ramirez, S. L. S. Barbour, and R. L. Barbour, “Instrumentation and calibration 
features in dense-scattering media by optical tomography,” Applied Optics 39, 6466-6486 (2000). 
14 C. H. Schmitz, M. Locker, J. M. Lasker, A. H. Hielscher, and R. L. Barbour, “Instrumentation for fast functional 
optical tomography,” Review of Scientific Instruments 73, 429-439 (2002). 
15 A. M. Siegel, J. J. A. Marota, and D. A. Boas, “Design and evaluation of a continuous–wave diffuse optical 
tomography system,” Optics Express 4, 287-298 (1999). 
16 D. A. Boas, T. Gaudette, and S. R. Arridge, “Simultaneous imaging and optode calibration with diffuse optical 
tomography,” Optics Express 8, 263-270 (2001). 

 15



 16

 
17 R. C. Collin, “The application of reciprocity and field equivalence principles to scattering from random media,” in 
Multiple Scattering of Waves in Random Media and Random Rough Surfaces, V. V. Varadan and V. K. Varadan, Eds., 
pp. 119-138, Pennsylvania State University Press, University Park, PA (1985). 
18 Y. Pei, “Optical Tomographic Imaging Using Finite Element Method,” Ph.D. Dissertation, Polytechnic University, 
Brooklyn, NY, 1999. 
19 K. D. Paulsen and H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion 
equation approximation,” Medical Physics 22, 691-701 (1995). 
20 A. H. Gandjbakhche, R. Nossal, and R. F. Bonner, “Resolution limits for optical transillumination of abnormalities 
deeply embedded in tissues,” Medical Physics 21, 185-191 (1994). 
21 H. L. Graber, Y. Xu, Y. Pei, and R. L. Barbour, “Spatial deconvolution technique for improving accuracy of 
reconstructed 3-D diffuse optical tomographic images,” submitted. 
22 Y. Pei, H. L. Graber, Y. Xu, and R. L. Barbour, “dynaLYZE—a Matlab-based analysis package for dynamic optical 
tomography with the DYNOT system,” 2004 OSA Biomedical Topical Meetings (Miami Beach, FL, Apr. 14-17 
2004).  
23 F. Hlawatsch, G. Matz, H. Kirchauer, W. Kozek, “Time–frequency formulation, design, and implementation of 
time-varying optimal filters for signal estimation,” IEEE Transactions on Signal Processing 48, 1417-1432 (2000). 
24 M. Stetter, Exploration of Cortical Function, Kluwer Academic, Boston, (2002). 
25 H. L. Graber, Y. Pei, R. L. Barbour, D. K. Johnston, Y. Zheng, and J. E. Mayhew, “Signal source seperation and 
localization in the analysis of dynamic near-infrared optical tomographic time series,” Proceedings of SPIE Vol. 4955: 
Optical Tomography and Spectroscopy of Tissue V, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, and E. M. 
Sevick-Muraca, Eds., pp. 31-51, SPIE Press, Bellingham, WA (2003). 
26 J. V. Stone, “Independent component analysis: an introduction,” Trends in Cognitive Science 6, 59-64 (2002). 
27 C. H. Schmitz, H. L. Graber, and R. L. Barbour, “Data integrity assessment and instrument calibration for the 
DYNOT imaging system,” 2004 OSA Biomedical Topical Meetings (Miami Beach, FL, Apr. 14-17 2004). 
28 Y. Pei, H. L. Graber, and R. L. Barbour, “A fast reconstruction algorithm for implementation of time-series DC 
optical tomography,” Proceedings of SPIE Vol. 4955: Optical Tomography and Spectroscopy of Tissue V, B. Chance, 
R. R. Alfano, B. J. Tromberg, M. Tamura, and E. M. Sevick-Muraca, Eds., pp. 236-245, SPIE Press, Bellingham, WA 
(2003). 
29 G. Strangman, J. P. Culver, J. H. Thompson, and D. A. Boas, “A quantitative comparison of simultaneous BOLD 
fMRI and NIRS recordings during functional brain activation,” Neuroimage 17, 719-731 (2002). 
30 R. B. Buxton, Introduction to Functional Magnetic Resonance Imaging: Principles and Techniques, Cambridge 
University Press, Cambridge, (2002). 
31 Blood Perfusion and Microenvironment of Human Tumors, M. Molls and P. Vaupels, Eds., Springer-Verlag, Berlin, 
2000. 
32 G. S. Landis, T. F. Panetta, S. B. Blattman, H. L. Graber, Y. Pei, C. H. Schmitz, and R. L. Barbour, “Clinical 
applications of dynamic optical tomography in vascular disease,” Proceedings of SPIE, Vol. 4250: Optical 
Tomography and Spectroscopy of Tissue IV, B. Chance, R. R. Alfano, B. J. Tromberg, M. Tamura, E. M. Sevick-
Muraca, Eds., pp. 130-141 (2001). 


