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 ABSTRACT 
 
Dynamic processes in biology are often controlled by multiple parameters that interact in a complex nonlinear fashion.  
Increasingly, evidence has accumulated that such behavior exhibits the property of sensitivity to initial conditions, a feature 
exhibited by chaotic systems.  One such system is the vasculature.  In this report, we present what we believe is the first 
experimental demonstration ever of imaging chaotic behavior of the vasculature in a large tissue structure (i.e., the human 
forearm).  Supporting these findings are results from numerical simulation demonstrating our ability to image and correctly 
characterize complex dynamic behavior in dense scattering media that experience spatiotemporally coincident variations in 
hemodynamic states. 
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1. INTRODUCTION 

In a series of accompanying reports we describe instrumentation1 and numerical methods2 that we have developed for the 
collection and analysis of time–series image data.  These capabilities represent various components of a more inclusive 
methodology that we seek to apply for the characterization of the spatiotemporal properties of vascular reactivity in large 
tissues using near infrared optical imaging methods.  It is our belief that such measures performed on tissue, either at rest or 
in response to homeostatic provocation, represents a large untapped reservoir for identifying new diagnostic measures of 
disease processes, as well as for monitoring the influence of a host of therapeutic regimens. 

Studies of dynamic processes in biology have indicated that the form of the function governing a process can have important 
implications for the approaches taken in detecting early–stage disease processes and for devising new therapeutic strategies.  
Central to this concept is the recognition that natural systems tend to organize themselves in ways that retain maximal 
flexibility while expending minimal energy.  These are properties common to systems whose dynamics are governed by 
chaotic nonlinear processes.  While the term “chaos” suggests unbridled disorganization in common parlance, here it refers to 
a more constrained state wherein, although some elements of randomness exist, the system is nevertheless governed by 
deterministic processes that interact in a nonlinear fashion, that have the property of sensitive dependence on initial 
conditions.3 

Increasingly, evidence is accumulating that this property both is pervasive in biology and has important implications for 
clinical medicine.  For instance, a common goal in therapeutics is to restore normal body function by achieving some steady–
state concentration of a drug until clinical symptoms subside.  While experience has taught us that the approach does work, 
not infrequently the range of success is quite large and includes a disturbing fraction of individuals for whom the treatment is 
notably ineffective.  One consequence of chaotic behavior in physiological systems is the introduction of a temporal 
component into the consideration of therapeutic strategies.  Thus it is not just deciding which drug and how much to give, but 
the timing of dosages as well, that can be relevant. 

A working hypothesis we have adopted is that improved therapeutic outcomes might be achieved if detailed information 
regarding the dynamics of the vascular response were available.  Given the central role of the vasculature in drug and nutrient 
delivery, gas exchange, and serving as a conduit for local and distant effectors, we believe the availability of a noninvasive, 
continuous, real–time imaging technology sensitive to vascular dynamics may prove useful in devising improved dosing 
schedules. 

As noted in accompanying manuscripts,1,2,4,5 we believe the method of dynamic optical tomography is well suited for 
monitoring vascular dynamics.  In this report we have explored this potential by imaging and quantifying dynamics of 
vascular reactivity in the human forearm in response to a periodic respiratory stimulus.  The acquired image time series was 
then subjected to an analysis in which parameters whose values suggest the occurrence of chaotic nonlinear behavior were 
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quantified.  Results obtained strongly indicate that such behavior, previously reported to occur in near surface microvessels,6 
is observable in cross–section.  As further evidence of the fidelity of the methodology, we have characterized the ability to 
reliably extract detailed measures of simulated complex dynamics occurring in localized regions within a dense scattering 
medium. 

2. METHODS 

2.1  Data collection for forearm and laboratory phantom studies 

Time series of tomographic data from a human forearm were collected while the volunteer followed a controlled–respiration 
protocol.  The influence of a respiratory stimulus was chosen as a simple noninvasive means to amplify the natural oscillatory 
activity of the vasculature.  The respiration rate was 0.08 Hz for the first 150 time points, and then was increased to 0.16 Hz 
for the remainder of the measurement period.  To assist in timing and repeatability, the volunteer was asked to adjust his 
respiratory rate to match the beat frequency of a metronome.  A total of 240 sets of tomographic measurements (6 sources, 18 
detectors) were collected, at a rate of 2.8 Hz.  Detector data were collected using a recently described measuring system.7 The 
measuring head used contained eighteen optical fiber bundles uniformly spaced in a circular array.  At each of six uniformly 
spaced illumination sites, light from a laser diode operating at 810 nm was directed to the tissue.  The optical power delivered 
to the tissue surface was approximately 5 mW. 

Time series imaging data was also collected under the same conditions as the forearm studies from a static laboratory 
phantom composed of white Delrin´.   The phantom was cylindrical in shape with a diameter of 9 cm and a height of 15 cm.   
This data was collected to serve as a control so as to distinguish stochastic data from the physiological findings.  

2.2 Design of simulation study 

The purpose of this study was to define the accuracy with which the methods used to analyze the experimental data can  
define complex time–varying hemodynamic processes occurring in highly scattering media.  Simulated was a 2D structure 
containing two inclusions.  Each inclusion was assigned different time varying levels in tissue blood volume (Vb) and blood 
oxygen saturation (sO2) within a background having static levels of each parameter.  Thus we considered a state where the 
hemodynamic parameters in the inclusions are varying independently from each other, yet both are spatially and temporally 

coincident.  Figure 1 shows a sketch of the target medium studied.  The values for 
(Vb) and (sO2) for the background closely agree with the approximate average 
tissue oxygenation level and blood volume seen in breast tissue.8  The ranges 
assigned to the hemodynamic parameters and the types of temporal fluctuation 
modeled are specified in Table 1.  The ranges indicated for Vb and sO2 represent 
20% fluctuations about mean values of 5% and 70%, respectively.  Assigned to the 
left–hand inclusion was a quasiperiodic time series for Vb(l,t) and a chaotic time 
series for sO2(l,t).  The former was generated by adding two sinusoidal functions 
whose frequency ratio was an irrational number,9 then computing one thousand 
function values at regular spaced time intervals.  A chaotic time series was 
generated by assigning randomly generated initial values to the Hénon equation,10 
and then iterating the equation one thousand times.  Assigned to the right–hand 
inclusion was a chaotic time series for Vb(r,t) and a stochastic time series for 
sO2(r,t).  Note that while solutions to the Hénon equation were used simulate 
dynamic behavior in both inclusions, by choosing different initial values, the 
chaotic time series generated are uncorrelated.  The stochastic time series was 
generated by drawing one thousand independent samples from a random variable 
uniformly distributed between -1 and +1. 

Figure 2 shows scaled plots of the first two hundred points (out of 1000) of the four assigned aperiodic functions.  Note that 
the particular forms of the functions chosen were not in any way meant to reflect actual changes occurring in vivo.  Instead 
they were chosen to simply represent examples of complex behaviors in that can occur in hemodynamic states.  As a general 
tissue model, we are aware that it does not account for the expected contributions from myoglobin or other heme proteins.   
We have not specifically included corresponding variability in myoglobin in our model, as its level is nearly constant in 
tissue11 and it has been previously suggested that its oxygenation state12 is mainly time–invariant.   
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Figure 2  Plots of initial 200 time points, out of 1000 simulated values, of modeled functions assigned 
to the indicated hemodynamic parameters in the target medium’s inclusions.  Note that the plotted 
functions have been rescaled to range from –1 to +1. 

To image the temporal variability in the assigned hemodynamic properties it was necessary to simulate a two–wavelength 
measurement, then compute an image time series of the absorption coefficient at each wavelength, and derive from these 
independent solutions estimates of the assigned hemodynamic parameters.  This was performed by computing optical 
absorption coefficient values that correspond to the known optical properties of hemoglobin at 760 nm and 840 nm, and to 
the assigned value for (Vb) and (sO2), using the formula   

( ) ( ) ( ) ( ){ }2 2med oxy redO 1 O .a b a at V t s t s tλ λ λµ µ µ = + −      (1) 

The value computed for ( )meda tλµ  (cm-1) is the medium absorption coefficient, at wavelength O, that corresponds to the 

designated oxygen saturation level and blood volume, while oxya
λµ  and 

reda
λµ  are the (time–independent) absorption 

coefficients (cm-1) of the oxygenated and reduced forms, respectively, of tetrameric Hb at wavelength O.  (The Hb absorption 

coefficients were, in turn, computed via the formula 4000a xx
c Mλ λµ ε= , where x

λε  is the monomeric millimolar extinction 

coefficient13 (dimensions are cm-1 mM-1) of Hb at wavelength O and in oxygenation state x (i.e., x = ‘oxy’,  ‘red’), M is the 
molecular weight of Hb, and c is its concentration.  The numerical values used were M = 64,500 g mol-1 and c = 150 g L-1.) 
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Table 1 Temporal fluctuations in hemodynamic properties of inclusions  



 

Note that the reduced scattering cross section (Ps�) in the medium, while spatially varying (10 cm-1 in the background and 
15 cm-1 in both inclusions), was temporally static throughout the medium. 

2.3 Forward Modeling 

Tomographic data for the simulated tissue models were acquired by using the finite–element method to solve the diffusion 
equation for a DC source, with extended Dirichlet boundary conditions.2,14 )RU D VSDWLDO GRPDLQ � ZLWK ERXQGDU\ ��� WKLV LV

represented by the expression 

( ) ( ) ( ) ( ) ( ), ,a sD φ µ φ δ ∇⋅ ∇ − = − − ∈ Λ r r r r r r r     (2) 

where φ(r ) is the photon intensity at position r , r s is the position of the DC point source, and D(r ) and µa(r ) are the position–
dependent diffusion and absorption coefficients, respectively.  Here the definition used for the diffusion coefficient was 
D(r ) = 1/{3[µa(r ) + µs�(r )]}, where µs�(r ) is the position–dependent reduced scattering coefficient.  Forward–problem 
solutions were computed for each of six sources positioned about the target at 60° intervals, with each source located at a 
depth of 2 mm in from the extended boundary (i.e., within the strip lying between the physical and extended boundaries).14  
Intensity values at eighteen locations, at the same depth as the sources but spaced at 20° intervals, were used as detector 
readings.  Imaging operators were computed, in the manner described in Ref. 2, for each of the resulting 108 source/detector 
pairs.  Tomographic data sets of detector readings were computed for each of the time–varying optical coefficients (1000 
total) assigned to the target inclusions.  A single set of imaging operators, computed for a 8–cm–diameter homogeneous 
medium whose properties are equal to those of the static region of the target, was used for all inverse problem computations. 

2.4 Image reconstruction methods 

The optical inverse formulation was based on the normalized difference method,2 in which the equation that we solve has the 
form 

,r rδ δW x = ÿ             (3) 

where δx is the vector of differences between the optical properties (e.g., absorption and scattering coefficients) of a target 
(measured) and a “background” medium, Wr is the weight matrix describing the influence that each voxel or element has on 
the surface detectors for the selected reference medium, and δI r represents a modified difference between detector readings 
obtained from the target in two distinct states.  The normalized difference is defined by 

( ) ( )
( ) ( )0

0

,i
r ri i

i

δ
−

=
I I

I I
I

      (4) 

where I r is the computed detector readings corresponding to a selected reference medium, and I  and I0 represent two sets of 
measured data (e.g., background vs. target, time–averaged mean vs. a specific time point, prior and subsequent to an evoked 
response, etc.). 

For both the simulation and experimental laboratory data, image reconstructions were carried out by using a conjugate 
gradient descent (CGD) algorithm to compute numerical solutions to the modified perturbation equation, without imposition 
of any constraints or weight–matrix scaling. 

2.4.1 Simulation Study 

Spatial maps of the assigned hemodynamic parameters for the simulated 2D medium were computed by combining the 
reconstruction results obtained from the independent computations of optical properties corresponding to simulated 
measurements performed at 760 and 840 nm, according to Eq. (5). 

Note that the reconstruction algorithm did not consider any interaction between the detector data at the two wavelengths, nor 
any a priori knowledge that the medium’s Ps� and background Pa were static.  Thus two independent sets of reconstructions 

were performed, of ( )760

meda tµ  and ( )760
medD t  in the one case, and of ( )840

meda tµ  and ( )840
medD t  in the other. The hemodynamic 

parameters were subsequently derived from the reconstructed ( )760

meda tµ  and ( )840

meda tµ , via the formulas  



 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( )2

840 840 760 760 760 840

red oxy tis red oxy tis

840 760 760 840

red oxy red oxy

840 760 760 840

red tis red tis
O 840 840 760 760 760 840

red oxy tis red oxy tis

,

,

a a a a a a

b

a a a a

a a a a

a a a a a a

t t
V t

t t
S t

t t

µ µ µ µ µ µ

µ µ µ µ

µ µ µ µ

µ µ µ µ µ µ

− − −
=

−

−
=

− − −

 (5) 

which we get by inverting the two–equations–in–two–unknowns system obtained from Eq. (1), with one equation explicitly 
for O = 760 nm and the other explicitly for O = 840 nm. 

2.4.2 Forearm and laboratory phantom studies 

Optical measurements of the forearm and static phantom were performed at 810 nm.  Use of only one wavelength, restricts 
the ability to simultaneously deduce tissue blood volume and blood oxygen saturation from the reconstructed absorption 
coefficients.  The 810 nm light that was employed does, however, lie near an isosbestic point in the Hb absorption 
spectrum.13  Therefore, in the case of forearm image time series, fluctuations in the reconstructed µa time series can be 
interpreted as reflective of temporal variability in Vb (while any seen in the Delrin´–rod image time series is indicative of 
random noise).  The time–series analysis operations described below accordingly were carried out directly on the 
reconstructed µa(t) for these cases.  Prior to performing these computations, the µa time series for each image pixel was band–
pass filtered over a range that included the vasomotor and respiratory frequencies (0.05–0.35 Hz). 

 2.5 Post–reconstruction image analysis 

Two measures of interest of spatiotemporal data sets are (1) an estimate of the accuracy with which temporal behavior is 
recovered and spatially mapped, and (2) insight regarding the origin of the temporal behavior itself.  Measures of the first 
provide an assessment of the fidelity of the applied technology.  The second seeks to understand the biological basis for the 
behavior.  To characterize these we have adopted a three–fold analysis scheme.  For the latter we have computed two 
measures that reflect the complexity of temporal behavior.  For the former, we have introduced a test to determine the 
temporal accuracy of the recovered behavior, as well as a test to determine how accurately this behavior is spatially mapped.   

2.5.1 Measures of Complexity 

Measures of complexity can provide an understanding of the minimum number of interacting parameters and manner in 
which they interact.  Two extensively studied statistics that convey this information are the correlation dimension15 (CD) and 
the maximal Lyapunov exponent16 (mLE) of a time series.  These quantities are computed from pseudo–state–space (PSS) 
representations of the data in a time series.  Briefly, a time series consisting of numbers x1,x2,...,xn is “embedded” into a PSS 
of dimension m by re–sorting the xs into m–dimensional vectors X1 = (x1,x��2,...,x1+(m-��2), X2 = (x2,x��2,...,x2+(m-��2), etc.; the 
SDUDPHWHU 2 WKDW DSSHDUV KHUH LV FDOOHG WKH ³WLPH GHOD\�´ 6HOHFWLQJ WKH ³FRUUHFW´ YDOXHV IRU m DQG 2 LQ D JLYHQ FDVH UHPDLQV

something of an art, although useful guidelines have been given by Griffith,17 and a lower limit for m can be obtained by the 
“method of false nearest neighbors.”18   

The CD of a time series is found by first computing the correlation integral,15  

                   ( ) ( ) 2

, 1
,

N

i ji j
C r r Nθ

=
≡ − −∑ X X      (6) 

where N is the number of data vectors, and �(z) is the Heaviside function: �(z) = 1 if z � 0, �(z) = 0 if z < 0.  The operation 
defined by Eq. (6) amounts to counting the number of vectors that lie within a distance r of each other, as a function of r.  In 
the limit as r approaches zero, invariably it is found that 

          ( ) vC r r∝         (7) 

for some positive real Q.  The specific value of Q obtained for a given time series is its CD.15 

The CD is interpretable as a lower limit on the number of variables that must be present in the dynamical system that gave 
rise to a time series.  If the xs are generated by a deterministic dynamical system, it is found that with increasing m, the 
computed CD eventually saturates, i.e., reaches a finite limiting value, while the CD computed for a truly stochastic time 



series increases indefinitely with increasing m.  In addition, in those cases in which the dynamics are predictable (i.e., 
periodic, which necessarily includes all linear dynamical systems), the CD will be an integer, while a fractional CDs indicates 
that the time series defines a fractal structure in the PSS, which in turn implies that the dynamics are nonlinear,17 and in many 
cases — although, as Ditto et al. have shown,19 not always — chaotic. 

Computation of maximal Lyapunov exponent 
In general, a time series embedded in a m–dimensional PSS will have m Lyapunov exponents O1,...,Om.  (Thus if the value 
chosen for m is larger than needed to obtain an accurate Q, some of the Os will be spurious; however, methods for identifying 
these are available.20)  Their significance is most easily grasped by imagining an infinitesimally small sphere centered about 
an arbitrarily chosen point in the PSS, and supposing that every point within the sphere represents the initial vector of a time 
series, all generated by the same dynamical process but with slightly different initial conditions.  Then, the vectors 
representing the future states of the system at any given future moment will fill not a sphere, but an ellipsoid.  This ellipsoid 
will have m principal axes, each of whose lengths is time–varying: H1(t),H2(t),...,Hm(t).21  It happens that each axis length varies 
approximately exponentially in time, 

                         ( ) ( )0 ,i t
i it eλε ε≈               (8) 

and Oi is, by definition, the i th Lyapunov exponent.21  While the sum of all Os must be negative if the dynamic system under 
consideration is dissipative, one or more of the individual Os may be positive.  The presence of even one positive Lyapunov 
exponent is diagnostic of chaotic dynamics, as it implies that two time series that begin arbitrarily close together will become 
increasingly different from each other with the passage of time (i.e., the system exhibits sensitive dependence on initial 
conditions3). 

As in most other practical applications to date, for this report we have focused on computing estimates of the largest 
exponent, O1, and typically are more concerned with knowing its algebraic sign than its specific value, as this is the feature 
that distinguishes between chaotic and non–chaotic dynamics.  The method we use for calculating O1 was developed by 
Rosenstein et al.16  In common with the algorithm for estimating the CD, the first step consists of identifying all inter–vector 
distances dj(i) in the PSS, where here i is the time index and j is the vector–pair index.  Then the quantity 

             ( ) ( )ln jy i d i t∆≡       (9) 

is calculated, where the indicated averaging is performed over all values of j, and 't is the interval between points in the time 
series.  Finally, O1 is estimated as the slope of the best–fitting line obtained by linear regression of y(i) vs. i.16 

2.5.2 Assessment of temporal accuracy 

PSS plots provide a simple means to detect patterns and regularities in, and constraints on, the reconstructed system behavior 
that are not evident from direct inspection of the time–series functions themselves.  Here we have used this method to 
provide a graphical means to judge the accuracy of the recovered temporal behavior in the two recovered hemodynamic 
parameters.   

2.5.3 Quantitative assessment of spatial localization of dynamic behavior.  Estimates of the spatial accuracy of 
recovered temporal behavior was judged by generating maps of the covariance (Vxy) between the derived Vb(t) and sO2(t) in 
every pixel and each of the functions Vb(l,t), sO2(l,t), Vb(r,t), and sO2(r,t).  Here a perfect reconstruction result would produce 
spatial maps for which only one of the modeled hemodynamic parameters significantly co–varies with the corresponding 
modeled function.  This measure was also used to examine the level of cross–talk between the two recovered parameters.  

3. RESULTS 

3.1 Forearm and laboratory phantom studies 

As noted in the Introduction, the occurrence of chaotic nonlinear behavior may have important implications for disease 
diagnosis and approaches to therapy.  Because of our ability to generate time–series image data, we have explored whether 
evidence might be gained from analysis of such data that is consistent with previous reports, which were based on surface 
measures, indicating that the vascular response may be governed by chaotic nonlinear processes.6  To examine this we have 
computed two measures, the correlation dimension (CD), and the maximum Lyapunov exponent (mLE) from pixel data 
obtained from the reconstructed image time series.  These results are shown in Figures 3 and 4.  Inspection of the color scale 
in Figure 3(A) reveals that most pixels within the cross–sectional map of the forearm have computed CD values that are 



Figure 4 Map of �1 in
each pixel, derived
from the same time
series of recon–
structed Pa (810 nm)
images as used to
generate � map
shown in Figure 3A
(i.e., target medium
is human forearm). 
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between 2 and 4.  We note with considerable interest that this range coincides well with previous estimates of the CD of the 
microvascular response obtained from surface measures.6   

We are aware that determination of the correlation dimension of a time series can be a tricky business, especially with small 
data sets.22  One concern is the expected dependence of the CD on the embedding dimension m.  In the case of a chaotic 
function, the value of the CD, Q, should approach a finite limit as m increases without bound.  In other results (not shown), 
we have observed this behavior for most of the pixel data explored in the image map.  In fact, the computed CD map shown 
was obtained using m = 20 for a time delay (W) of 1.  As a control, we have collected time–series tomographic data from a 
static phantom (9–cm diameter white Delrin rod) and subjected the resultant image series to the same analysis as reported in 
figure 3(A).  Analysis of stochastic data leads to two anticipated results.  The first is that the value of the CD should show no 
sign of approaching a limiting value as m increases.  This was observed for essentially all pixel data for the static phantom.  
The second is that significantly greater values of the CD should be obtained for stochastic data when the same values of m 
and W are applied as were used in the generation of the data presented in Figure 3(A).  Inspection of Figure 3(B) shows that 
this is observed, with most pixels having Q > 4. 

  

 

 

 

  
 
 
 
 
 
 
 
 
 
To further characterize the dynamics of the image pixel data we have computed corresponding spatial maps that reveal the 
mLE.  This coefficient is a measure of the sensitivity to initial conditions.  The value of the mLE is negative for systems 
experiencing converging behavior, zero for stochastic systems and positive for systems exhibiting chaotic behavior.  Here 
again, we are aware that care must be exercised in analyzing small data sets.16,22  A control experiment often conducted to 
 
 
 
 
 
 
 
 
 
 
 
 
support evidence of chaotic behavior is to analyze surrogate data.23  Surrogates are generated by randomizing the phase of a 
function’s Fourier transform, computing the inverse Fourier transform, and deriving from the resulting function measures of 
the mLE.  Typically, many such surrogates are computed to obtain statistical estimates of the similarity between the 
stochastic time series and the test time series.   Figure 4 shows image maps that reveal the mLE for the physiological data set.  
The map shown in Figure 5 identifies the corresponding p–value for each pixel compared to pixel data generated from 
surrogate data.  Inspection of Figure 4 reveals several areas in the cross section where the value for the mLE approaches 0.2.  
The image map in Figure 5 shows that these computed mLE values are, for most pixels, statistically different from those of 

Figure 3  Correlation dimensions computed, in each pixel, from a time series of 
reconstructed images of Pa (810 nm).  (A), target medium is forearm of human volunteer; 
(B) target medium is a solid white Delrin´ rod. 



their surrogates, suggesting that the time series associated with most pixels is indeed chaotic.  Thus we have identified two 
measures from the image pixel data that support the existence of chaotic behavior in the vascular response. 

3.2 Simulation study 

In an effort to gain further confidence in the reliability of the measures identified from the physiological time series image 
data, we have sought to characterize the accuracy by which these methods can correctly recover spatially distributed complex 
temporal behavior from simulated data.  As an added measure of fidelity, these were applied to characterize spatiotemporal 
coincident behavior involving hemoglobin states whose coefficient values were derived from analysis of the two independent 
reconstructed image time series.  

In Figure 6 we show a spatial map of the temporal mean value for ÃVbÓ and ÃsO2Ó from the reconstructed image time series.   
Inspection shows that that while the presence of two objects is apparent, their true sizes are overestimated, and they are not 
completely separated.  In addition, the recovered parameter contrast is significantly underestimated.  The true contrast of the 
inclusions relative to the background was 89% for ÃVbÓ and 4.5% for ÃsO2Ó.  The corresponding values obtained from the 
reconstructed images were on the order of 10% of this value reflecting, in part, the influence of spatial blurring.  We show 
this data to make the point, as we have recently reported,7,24–26 that whereas the quality of time averaged spatial maps is only 
fair, as will be shown, the quality of the temporal information derivable from an image time series can be much greater.   As 
we have argued, this property reflects an intrinsic difference in the robustness of temporal measures.   

 

 

 

 

 

 

 

 

 

 

 

This can be simply demonstrated by computing a spatial map of the standard deviation of the image time series.  This is 
shown in Figure 7.  The principal difference between the results shown here and those in Figure 6 is the contrast level in the 
image.  Because the background is static, its standard deviation is essentially zero, whereas the corresponding value in the 
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Figure 6 

Legend  Time averaged image map of Vb (Panel A) and of sO2 (Panel B) of the dynamic 
target medium sketched in Figure 1. 
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Legend   Standard deviations of time series of Vb (Panel A) and of sO2 (Panel B) of the 
dynamic target medium sketched in Figure 1. 

40 
 
 
 
 

20 
 
 
 
 

0 
0                        20                         40 0                        20                         40 

1.4E-4 
 
 
 
 
7E-5 
 
 
 
 
0 

4E-3 
 
 
 
 
2E-3 
 
 
 
 
0 

A B 



inclusion is nonzero.  While the observation of increased contrast is not surprising, it nevertheless directly shows that 
inclusions experiencing temporal variability can be identified with considerably improved quality.  This leads to the more 
interesting question of just how well can spatially varying temporal behavior be defined.  This is explored in the results 
shown in Figures 8–10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 50 100 150
0. 04

0. 045

0. 05

0. 055

0.06

Tim e(S ec )

0. 04

0. 045

0. 05

0. 055

0. 06

0. 04

0. 045

0. 05

0. 055

0. 06
0. 04

. 045

0. 05

. 055

0. 06

XY

Figure 8 

0.662 

0.662 

0.662 

0.676 

0.676 

0.676 

0.55 

0.55 

0.55 

0.90 

0.90 

0.90 

0                   100                 200                 300 

0.9 
 
 

0.5 0           100          200           300 

0.68 
 
 

0.66 

F E 

C 

 0          100        200         300 

0.0280 
 
 

0.0274 

D

0.0274 

0.0274 

0.0274 

0.0280 

0.0280 

0.0280 

0                   100                 200                 300

0.06 
 
 

0.04 

0.04 

0.04 

0.04 

0.06 

0.06 

0.06 

C 

0                   100                 200                 300

0.06 
 
 

0.04 

0.04 

0.04 0.04 

0.06 

0.06 
0.06 

 0          100          200         300 

0.0278 
 
 

0.0272 

0.0273 

0.0273 

0.0279 

0.0279 

0.0279 

0.0273 

A B 



 

 

 

 

 

 

 

 

 

 

Legend Representative 3–D pseudo–state–space trajectories for modeled and reconstructed temporal variations in 
hemodynamic properties of the two inclusions in the nonlinear dynamics simulation study.  Panel A, Vb modeled in 
left–hand inclusion (see Figure 1); panel B, reconstructed Vb time series in pixel (row=13,column=21); panel C, Vb 
modeled in right–hand inclusion; panel D, reconstructed Vb time series in pixel (27,21); panel E, sO2 modeled in left–
hand inclusion; panel F, reconstructed sO2 time series in pixel (13,21); panel G, sO2 modeled in right–hand inclusion; 
panel H, reconstructed sO2 time series in pixel (27,21). 

Recall from Methods, we have adopted a three–fold analysis scheme to define the accuracy with which temporal behavior is 
recovered and spatially mapped.  A simple graphical means to assess accuracy is to compare the computed PSS attractors for 
the original and reconstructed time series.  Figure 8 shows the dependence of this on the functional form of the time series 
introduced for the two hemodynamic properties.  It will be recalled that in this study Vb and sO2 fluctuated in time according 
to different mathematical functions at the same time and location.  In Figures 8(A), (C), (E) and (G), we show the PSS 
representations (m = 3, W = 1) of the four modeled temporal fluctuations.  Each of these is derived from one of the four 
functions plotted in Figure 2 (reproduced at the tops of the panels in Figure 8).  Figures 8(B), (D), (E) and (H) show matching  
results from the time series of recovered Vb(t) and sO2(t).  The spatial map reproduced in the upper right portion of each panel 
is one particular image from the appropriate time series (Vb(t) in Figures 8(B) and 8(D), sO2(t) in Figures 8(F) and 8(H)), 
while the curve plotted in the upper left portion is the recovered temporal variation in a single selected pixel (left–hand 
inclusion in Figures 8(B) and 8(F), right–hand inclusion in Figures 8(D) and 8(H)).  The 3D PSS representation of the 2D 
curve also is shown in each Panel.  It is seen that a markedly different form of PSS curve is obtained for each of the three 
qualitatively different types of modeled temporal variability, and that in every case the recovered function matches the 
modeled function closely. 

While the results presented in Figure 8 demonstrate a strong positive correlation between the modeled and recovered 
temporal variability in the selected pixels, they do not directly address the practical questions of how accurately each of the 
four modeled hemodynamic functions is spatially localized in the Vb(t) and sO2(t) maps and the degree of parameter cross–
talk (i.e., the magnitude by which one time series (e.g., Vb(t)) overlaps with the another (e.g., sO2(t))).  The former can be 
determined by computing the covariance between the modeled and recovered function while the latter can be determined by 
comparing the time series of one recovered hemodynamic parameter to the time series used to model the other.  Results of 
these computations are shown in Figures 9 and 10.  Figures 9(A) and 9(C) are the computed covariance maps for Vb(t).  
Inspection shows that the spatial maps of both the left and right hand inclusions correctly locate the position of the temporal 
behavior and nearly completely isolates one time–varying function from the other.  A similar result is obtained for the sO2(t) 
maps (Figures 10(B) and 10(D)). 

The degree of parameter cross–talk between the hemodynamic functions is revealed in the companion panels of Figure 9 and 
10.  Inspection of Figures 9(C) and 9(D) reveals that a fraction of the sO2(t) time series appears in the recovered Vb(t) time 
series.  The magnitude of cross–talk can be determined by comparing the maximum (absolute) value of covariance in Figure 
9(A) or 9(C) to that in either 9(B) or 9(D).  At first glance, this comparison suggests that the level of cross–talk is on the 
order of 15%.  The true cross–talk level actually is much less. This is because covariance depends on the absolute amplitude 
of the varying functions, and these are not the same for the two modeled parameters.  The variance in the modeled Vb time 
series is <1% that in the modeled sO2 functions.  After taking this difference into account, we find that the modeled sO2(t) 
accounts for <1% of the variability in the recovered Vb(t) maps.  A similar comparison involving the magnitude of cross–talk 
between the modeled Vb(t) and recovered sO2(t) shows that, once again, we find that the level of cross talk is small (<1%). 
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  Note that this seemingly reciprocal relationship is by no means guaranteed, because the forms of the functions used to 
derive the hemodynamic parameters from the reconstructed two–wavelength reconstructed image time series are qualitatively 
different. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As a final measure of the accuracy with which the time–series image data were recovered, we have computed the value of the 
CD for each of the modeled functions for pixels lying with the actual boundary of the inclusions.  These values are listed in 
Table 2 together with the expected values.  Comparison shows that essentially in all cases, accurate recovery of the CD 
values were obtained. 

4. DISCUSSION AND CONCLUSIONS 

Characterization of functional processes often provides for the early detection of disease states.  Because of the intimate 
relationship between tissue function and the vascular supply, measures of vascular dynamics may serve as windows into 
understanding not only the influence of disease processes, but also how tissues respond to the progression of the offending 
state.  The availability of such measures could also serve as a guide to therapy.  Drugs that influence tissue function, as many 
do, can be expected to provoke vascular responses.  Characterization of the details of these responses could serve as a marker 
for identifying desirable or undesirable influences on the vasculature, as well as providing a measurable guide to improving 
dosing schedules. 

Thus far, investigations of the temporal dynamics of blood flow in tissue have been restricted mainly to near–surface studies. 
Recently we have proposed that the method of dynamic optical tomography may be well suited to investigate vascular 
dynamics in large tissues.24–26  This capability arises from the observation that hemoglobin, which is nearly always restricted 
to the vascular space, is the principal absorber in tissue in the NIR region, and thus temporal variations in optical signal levels 
can be interpreted as originating principally from the time varying vascular response.  

Legend Spatial maps of covariance between recovered Vb(t) and the four simulated time–
varying functions: (A) Vb(l,t); (B) sO2(l,t); (C) Vb(r,t); (D) sO2(r,t). 
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In this report we have provided preliminary evidence that the complex behavior of vascular dynamics can also be observed in 
cross section.  In particular, we have found that the reconstructed time–series pixel data exhibits properties consistent with 
chaotic nonlinear behavior.   We have further demonstrated that the same methods used to evaluate the physiological data are 
fully capable of accurately recovering and spatially mapping temporal behavior in the limiting case of spatiotemporal 

Legend Computed values of the correlation dimension derived from the reconstructed
image series. Symbols: Q, numerical value of the correlation dimension; Vb, tissue
blood volume; sO2, blood oxygen saturation.  (*) For stochastic fluctuations of the
type used, Q is equal to the embedding dimension, which was 3 for this
demonstration. 

Table 2 Correlation Dimensions for hemodynamics simulation 
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Legend Spatial maps of covariance between recovered sO2(t) and the four simulated time–
varying functions: (A) Vb(l,t); (B) sO2(l,t); (C) Vb(r,t); (D) sO2(r,t). 



coincident complex hemodynamic states.  Currently underway are studies seeking to define the spatiotemporal dynamics of 
the vascular response of breasts with neoplastic disease, and evoked–response studies on adult brain. 
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