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Abstract 
Representative results from simulated, laboratory and 
physiological studies are presented, demonstrating the 
ability to extract important features of dynamic behavior 
from dense scattering media.  These results were obtained 
by analyzing time series of reconstructed images.  
Investigations on the human forearm clearly reveal the 
ability to identify and correctly locate principal features of 
the vasculature.  Characterization of these features using 
linear and nonlinear time–series analysis methods can 
produce a wealth of information regarding the spatio–
temporal features of the dynamics of vascular reactivity.   

 
Introduction 
The vascular system is responsible for maintaining 
adequate perfusion of tissue.  Perfusion states are 
modulated in response to local metabolic demands and 
central factors [1].  While various techniques have been 
developed to assess vascular perfusion, imaging methods 
increasingly are the preferred modality.  Often assessment 
of perfusion is based either on measures that are sensitive 
to flow (e.g., as determined by acoustic or optical Doppler 
measurements) or on anatomical evidence  (e.g., imaging 
studies that reveal the presence of stenosis).  Certainly such 
measures have proven useful in many clinical situations.  
These, however, represent only a small faction of the 
information available regarding vascular dynamics.  For 
instance, it is clear that various vascular beat frequencies 
exist and that these are attributable to different structures 
of the vascular tree (e.g., a cardiac beat is restricted to the 
arteries, while a respiratory beat frequency occurs mainly 
in the microvessels).  Presently, it is not possible to 
differentiate these signatures in a cross–sectional spatial 
map.  Should this capability become available, it could 
prove especially useful for the early detection of disease 
processes that are known to compromise these responses 
(e.g., onset of peripheral neuropathy in diabetes).   
 

Other measures of vascular dynamics might also prove 
useful for diagnostic or monitoring purposes.  For instance, 
blood flow within the arterial or venous structures is 
basically unidirectional.  Within a selected cross–section, it 
may be expected that the pulsatile activity of the 
vasculature at a given frequency should be in phase.   The 
presence of stenosis proximal to the measuring site could 
be indicated by either out–of–phase responses or 
significantly damped amplitudes.  Spatial maps revealing 
either temporal correlations or the amplitude of a selected 
beat frequency could serve to identify lesions associated 
with inadequate perfusion.   
 
Recently, we have demonstrated the ability to characterize 
dynamic features of dense scattering media and display this 
information in a cross–sectional view, by analyzing a time 
series of image data obtained by optical tomography [2,3].  
These data were based on simulated hemodynamic models 
of the breast [2] and on laboratory studies of scattering 
media containing a dynamic phantom [2,3].  For this report 
we have extended these studies to include various 
measures of the dynamic response of the vasculature in the 
human forearm to simple physiological manipulation.  
Results obtained confirm the ability to identify well–
known features of vascular dynamics (e.g., the occurrence 
of cardiac and respiratory beat frequencies).  Examples 
illustrating how simple linear time–series analysis methods 
can be used to locate and identify specific features of the 
vasculature tree also are given. 
 
Methods  
Target media:  Three different target media have been 
explored.  One of these involved numerical studies while 
the others involved experimental studies on a laboratory 
phantom or a human forearm.   

 
i. Numerical Investigations:  In this study we numerically 
modeled dynamic vascular behavior in a heterogeneous 



tissue background.  Our model was based on a segmented 
2–D MRI image of the breast and included three different 
tissue types: adipose, parenchyma and a “tumor.”  By 
assigning appropriate values for the absorption coefficients 
we could model harmonic temporal fluctuations in tissue 
blood volume.  The frequency of this modulation was 
varied in accordance to tissue type.  The extent of 
modulation was ±10% about the mean value.  The 
frequencies chosen were essentially arbitrary, but we did 
use values whose ratio closely matches the ratio of the 
cardiac to respiratory frequency found at rest.  In an effort 
to simulate more realistic conditions, we also included in 
the model differences in tissue hemoglobin oxygenation 
levels and in values of the scattering coefficient.  
Variations in oxygenation levels were modeled by 
assigning absorption coefficient values that correspond to 
two different illumination wavelengths (760 and 840 nm).  
While the oxygenation level and scattering coefficient 
values differed for the different tissues, their temporal 
properties were time–invariant.  Thus, our model simulated 
a dual–wavelength, time–varying tomographic 
measurement for which dynamic behavior was restricted to 
variations in blood volume.  The external diameter of the 
breast phantom was 8 cm. 
 
ii. Laboratory Phantom:  The second case studied was a 
vessel, 7.6 cm in diameter, filled with 2% (v/v) Intralipid 
and containing two small balloons each filled with dilute 
(50 µM) solutions of hemoglobin.  The balloons were 
made to beat at different frequencies by volumetric 
displacement using a piston pump.  As with the 
hemodynamic tissue model, the specific frequencies 
chosen were arbitrary but their ratio closely matched the 
cardiac to respiratory beat frequency ratio at rest.  

 
iii. Forearm studies:  The third case examined involved 
dynamic measures on the human forearm.  A range of 
responses have been explored, and include the influence of 
deep–breathing exercises, a cold shock, response to finger 
flexing, and influence of varying levels of restricting 
pressure produced by inflating a pressure cuff proximal to 
the measuring site.  As our purpose here is only to 
demonstrate the fidelity and type of information retrievable 
from the time–series image data, we report only selected 
portions of these studies.  Details of each of these will be 
reported at upcoming conferences [4] and elsewhere [5].   

 
Collection of Time–Series Image Data:  Tomographic data 
for the tissue model was acquired by using the finite 
element method to solve the diffusion equation with 
Dirichlet boundary conditions.  The source/detector 
configuration used match those adopted in the 
experimental studies.  In all cases, image formation was 
based on use of six source positions and eighteen detectors 
per source.  Each source sequentially illuminated the target 
and data were collected in parallel.  Sources were 

positioned uniformly about the target at 60° intervals, 
while detectors were positioned at 20° intervals.  The 
sampling rate (simulated or real) varied depending on the 
experiment, but in all cases was 2–4 Hz.  A total of 240–
300 data points were collected for each time–series. 
 
Instrumentation: Time–series detector data from 
experimental studies were collected using a recently 
described optical imager [3].  The instrument functions as a 
serial–source, multi–channel, parallel–detection device.  
Figure 1 show a photograph of the iris imaging head used 
in these studies.  By adjusting the pass–through diameter, 
optical fibers can be brought into gentle contact with the 
target medium.  Depending on the study, measurements 
were performed at 2–4 Hz in either a single– (810 nm) or 
dual–wavelength (780 and 810 nm) mode.  

Figure 1:  Photograph of iris imaging head.   
 
Preimage Analysis and Image Reconstruction:  For each 
detector channel, optical data at each time point were 
normalized to a mean value of the recorded signal.  For 
most studies, the mean value was computed from the data 
points in the initial 30 s of measurement.  The normalized 
values were then used as the input data vectors for image 
recovery. Images were computed by simultaneously 
solving for the diffusion and absorption coefficients using 
a recently described algorithm [6].  Computed solutions 
were limited to the first order Born approximation using a 
CGD solver.  Also, while both coefficients were computed, 
reported results here are restricted to estimates of the 
absorption coefficient.   

 
Post–reconstruction Image analysis:  Where indicated, 
standard linear time–series analysis methods were 
employed to evaluate the image series [7].  For example, 
the frequency spectrum of the image time series was 
derived by computing the Fourier transform for each pixel.  
Other measures involved computing inter–pixel and 
detector–to–pixel cross–spectral density and coherence 
functions.  
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Results 
 
Enhanced Image Contrast of Dynamic Features.  
Improvement in image contrast and resolution is important 
for any imaging method.  Thus far, optical imaging 
methods have produced only images having relatively low 
contrast and resolution from tissue studies.  While 
refinements in data processing and instrument performance 
may improve this situation, at this point it would seem that 
these contrast and resolution levels might represent basic 
features of optical imaging.  Recently we have shown [2,3] 
that images that identify dynamic behavior in the optical 
coefficients (e.g., amplitude of time–harmonic oscillations 
in µa) can produce spatial maps that have greatly improved 
quality compared to images of the spatial contrast in the 
optical coefficients per se.  These can include amplitude 
and phase maps of the Fourier spectrum, and maps of 
temporal correlations and their frequency composition.  As 
an example, in Figure 2 we show an original image of a 
complex target medium (a), a reconstructed map of its 
time–averaged blood volume levels (b), and a map of the 
computed coherence at a selected frequency (c) computed 
from the same data shown in (b) and derived from analysis 
of a time series.  

 
Figure 2. Panel A.  Contrast map of simulated blood volume levels in MR 
mammogram. Panel B, reconstructed time–averaged image of blood 
volume. Panel C, computed coherence between an indicated index pixel 
(‘x’) and image map.  Scale in panels A and B indicate fractional blood 
volume in tissue. Modeled blood volume levels were: adipose tissue 
(black) – 2.5%, parenchymal tissue (dark gray) – 3.5%, tumor (light gray) 
– 10%; oxygen saturation levels were: adipose tissue – 100%, 
parenchymal tissue – 90%, tumor – 50%; modulation frequencies were: 
adipose tissue – 0.12 Hz, parenchymal tissue – 0.40 Hz, tumor – 0.06 Hz.  
The map shown in panel C is the 0.35 Hz component of the coherence 
function.  
 
The original is a 2–D coronal section of a MR 
mammogram, for which various optical properties 
(0.04<µa<0.3, 5<µs<15 cm-1) were assigned to the different 
tissue types [adipose (dark), parenchyma (gray) and tumor 
(light)] (see legend for description).  Comparison shows 

the resolution and contrast of the time–averaged map is 

relatively low and the tumor is not evident.  In contrast, the 
tumor is clearly revealed in the coherence image.  
Significantly, this result was obtained without any prior 
knowledge of the tumor’s presence, and instead is 
dependent solely on the tumor having a temporal response 
different from that of the surrounding tissue.  Clinically, 
such behavior may exist naturally [8], or it could be 
induced in response to a simple manipulation of the 
vascular perfusion state.  These findings thus demonstrate 
that high–quality image data revealing the presence of 
dynamic behavior in a dense scattering medium can be 
derived from analysis of time series of images of a 
complex simulated phantom.  Next we show results 
demonstrating that images of similar quality can be 
obtained from a laboratory phantom exhibiting dynamic 
behavior. 

 
Spatio–Temporal Imaging of a Dynamic Phantom. Figure 
3 shows a schematic of the apparatus used for the phantom 
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study.  Illustrated are two balloons filled with a dilute 
solution of hemoglobin (50 µM) and attached to a support 
structure.  The balloons are made to beat at different 
frequencies by periodic volume displacement.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Schematic of apparatus used for dynamic phantom study. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.  Reconstructed FT image of oscillating balloons. 
 
The apparatus was introduced into a vessel 7.6 cm in 
diameter and containing 500 mL of 2% (v/v) Intralipid. 
Time–series tomographic measurements were performed 
using the iris imaging head shown in Figure 1.  Figure 4 
shows images derived by computing the Fourier transform 
of the image series at the two different beat frequencies.  
Inspection reveals nearly complete spatio–temporal 
resolution of the added inclusions.  
 
Imaging of Dynamic Behavior of Vascular Reactivity in the 
Human Forearm.   

 
The natural occurrence of vascular frequencies arising 
from respiratory and cardiac activity can be exploited to 
produce a spatial map revealing the presence of different 
components of the vascular tree.  Figure 5 shows a map of 
the logarithm of the ratio of the computed FT amplitudes at 
the cardiac and respiratory frequencies obtained from a 
time–series measurement on the forearm.  Figure 6 is a 
representative MR image in the same region of forearm.  
An overlay of the two maps having the same orientation is 
shown in Figure 7.  Inspection reveals that in the vicinity 
of the radial (1), interosseous (3)  and ulnar (5) arteries, the  

ratio of the Fourier amplitudes (cardiac to respiratory) is 
nearly ten times larger than it is in other regions.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.  Map of ratio of FT amplitude. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.  MR image of forearm.  (1) radial artery,(2) radius, (3) 
interosseous artery, (4) ulna, (5) ulnar artery. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Overlay image.   
 
This response can be seen more clearly in Figure 8, which 
shows the cross–spectral density (CSD) between a surface 
detector and specific locations in the image.  The particular 
spectra shown were obtained from points in the image 
corresponding to locations in the flexor digitorum 
superficialis muscle, and points near the radial and 
interosseous arteries.  Inspection reveals that in muscle the 
dominant signal coincides with the frequency of 
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respiration, while for the arteries the dominant signal is at 
the cardiac frequency. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8.  Panel A.  CSD spectrum at position  (19, 12)  
 
 
 
 
 
 
 
 
 
 
 
 
Panel B. CSD spectrum at position  (11, 13) 
 
 
 
 
 
 
 
 
 
 
 
 
Panel C. CSD spectrum at position  (18, 27) 
 
Finger–Flex study. 
 
In this study we further explored the ability to measure 
dynamic behavior by examining an image time series 
derived from measurements obtained while the subject was 
conducting a finger–flex exercise.  Finger flexing involves 
the action of so–called antagonistic muscle groups that are 
located on opposite sides of the forearm, specifically the 
flexor digitorum superficialis on the ventral side and the 
extensor digitorum on the dorsal side.  Results in Figure 9, 
panel A show a map of the amplitude of the Fourier 
spectrum obtained at the finger–flex frequency (0.25 Hz).  
Figure 9, panel B shows an overlay of this image onto an 
MR image of the same forearm oriented in the same 
position.  Inspection reveals that positions of maximum 
amplitude for finger–flexing coincide well with the two 
involved muscle groups. 
 
Further evidence supporting the accuracy of this 
assignment is shown in Figure 10.  Shown are time series 
values for µa at points in the image coinciding with the 

involved muscles.  It is noteworthy that the two signals are 
approximately 180° out of phase with each other, which is 
the expected response from the action of antagonistic 
muscle groups. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9. Panel A. Map of amplitude of FT at the finger–flex frequency.  
Panel B. Overlay image with identified anatomic structures: 1), radial 
artery, 2) radius, 3) interosseous artery, 4) ulna, 5) ulnar artery, 6) basilic 
vein, 7) cephalic vein, 8) flexor digitorum superficialis, 9) extensor 
digitorum, 10) flexor digitorum profundus.  Arrows indicate areas regions 
that overlay on involved muscle groups. 
 

 
 
 
 
 
 
 
 
 
 
Figure 10.  Temporal variations in µa at pixel locations in involved muscle 
groups.  

 
Discussion 
A hallmark of vascular system is the rapidity and 
flexibility of its responses to changing metabolic demands.  
This is accomplished through the dynamic interaction of 
local metabolic and central neurological control 
mechanisms.  Currently, our ability to investigate these 
interactions is primarily limited to discrete measures of 
flow in large deep vessels or small superficial vessels.  
Lacking is a comprehensive understanding of the 
integrated physiological response of vascular reactivity, 
whose details will certainly vary with anatomical site and 
disease states.  As has been abundantly demonstrated by 
electrocardiographic and electroencephalographic studies, 
much information about physiological response and control 
can be gained by examination of time–varying processes.  
We believe this insight regarding the control of vascular 
reactivity is attainable by optical tomography.  In this 
report we presented results documenting the ability to 
measure specific time–varying features in a range of target 
media.  Examined were various features identifiable using 
linear time–series analysis methods.  While these measures 
can provide a valuable insight regarding vascular 
dynamics, there is much evidence indicating that nonlinear 
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processes govern the vascular response.  In this regard we 
have recently demonstrated the ability to detect temporal 
fluctuations in optical properties defined by a chaotic time 
series, and to differentiate these from harmonic, 
quasiperiodic, and stochastic responses [9].  Extension of 
this capability to physiological studies could open new 
vistas in our understanding the vascular response and aid in 
the design of rational treatment protocols for disease 
intervention.   
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