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Optical tomographic imaging of dynamic features
of dense-scattering media
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Methods used in optical tomography have thus far proven to produce images of complex target media (e.g.,
tissue) having, at best, relatively modest spatial resolution. This presents a challenge in differentiating ar-
tifact from true features. Further complicating such efforts is the expectation that the optical properties of
tissue for any individual are largely unknown and are likely to be quite variable due to the occurrence of natu-
ral vascular rhythms whose amplitudes are sensitive to a host of autonomic stimuli that are easily induced.
We recognize, however, that rather than frustrating efforts to validate the accuracy of image features, the time-
varying properties of the vasculature can be exploited to aid in such efforts, owing to the known structure-
dependent frequency response of the vasculature and to the fact that hemoglobin is a principal contrast feature
of the vasculature at near-infrared wavelengths. To accomplish this, it is necessary to generate a time series
of image data. In this report we have tested the hypothesis that through analysis of time-series data, inde-
pendent contrast features can be derived that serve to validate, at least qualitatively, the accuracy of imaging
data, in effect establishing a self-referencing scheme. A significant finding is the observation that analysis of
such data can produce high-contrast images that reveal features that are mainly obscured in individual image
frames or in time-averaged image data. Given the central role of hemoglobin in tissue function, this finding
suggests that a wealth of new features associated with vascular dynamics can be identified from the analysis
of time-series image data. © 2001 Optical Society of America

OCIS codes: 100.2960, 170.3880, 100.2980, 170.4580, 100.6950, 170.5380.
1. INTRODUCTION
Interest in optical tomography continues to grow, largely
because of its perceived potential for creating new venues
for investigating functional features of critical organ sys-
tems in a wide range of clinical situations.1 One area of
interest is the use of optical tomography for the purpose
of defining spatial variations in perfusion states (i.e., the
level and oxygenation state of tissue hemoglobin).2,3 Fa-
voring such investigations is the fact that in the near in-
frared (NIR) region, hemoglobin is a principal contrast
agent. While such sensitivity is desirable, the known dy-
namic behavior of the vasculature4 can, depending on the
conditions of measurement, be expected to give rise to
considerable signal variability.5 Interestingly, although
0740-3232/2001/123018-19$15.00 ©
such behavior is widely known,6–8 its influence on image
quality, and on information derivable from image data,
has not been widely considered for the problem of optical
tomography.

A brief consideration suggests that there are three op-
tions available for data collection that can be expected to
influence the impact that vascular reactivity may have on
image data. One would be to simply eliminate its influ-
ence by collecting data on a time frame that is long com-
pared with the (reciprocal of the) lowest significant vascu-
lar frequency. Conversely, data could be collected on a
fast time frame, thereby achieving a ‘‘snapshot.’’ The third
would be to collect a time series of images. Determining
which of these alternatives is most suitable requires con-
2001 Optical Society of America
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sideration of related issues. For instance, confounding
any choice is the relatively low spatial resolution of the
images of tissue that have thus far been reported.9–11

How much of this is due to underlying vascular reactivity,
how much to limitations on data collection, and how much
to numerical difficulties associated with image recovery
(e.g., ill-posedness) is unclear. These considerations lead
to an even more basic yet related question. Given that
the optical properties of tissue are mainly unknown, and
are time-varying (at least for absorption due to hemoglo-
bin), how does one distinguish between possible artifacts
present in the image data and real tissue contrast fea-
tures that are recovered with low resolution?

A standard approach would be to simply compare opti-
cal contrast maps with some other data set, for example, a
magnetic resonance (MR) image of the same site. While
this can prove useful, the contrast mechanisms of MR
(magnetic properties of hydrogen), and of other imaging
methods for that matter, are very different from those at
NIR wavelengths (absorption, mainly due to hemoglobin,
and elastic light scatter, caused by differences in refrac-
tive index among subcellular structures). Hence, it could
prove difficult from examination of low-resolution optical
images to recognize features that are evident in other im-
aging modalities or to distinguish what is real from arti-
fact. Adding to this the additional variability that, de-
pending on measurement conditions, can arise from
vascular reactivity serves to underscore the need for care-
ful selection of data collection strategies.

It is our view that rather than frustrating efforts to
validate the accuracy of image features, the time-varying
properties of the vasculature can be exploited to aid in
such efforts and to effect what amounts to a self-
referencing scheme. The idea here is as follows. We rec-
ognize that various vascular structures, (e.g., arteries,
veins, microvessels) exhibit particular natural beat fre-
quencies, and in many instances the location of these
structures in tissue is either well known or easily deter-
mined (e.g., from MR image data). Thus two different
classes of information should be available from optical
measurements: spatial maps revealing hemodynamic
states (i.e., position-dependent tissue blood volume and
blood oxygenation), and maps that reveal the temporal
properties of these parameters (assuming an appropriate
time series of image data is collected). Hence, by corre-
lating the measured temporal features to the parameter
maps, the accuracy of specific features can be verified, at
least qualitatively. For instance, a cardiac frequency
should be limited mainly to the major arteries. Should
significant inconsistencies be found, it might suggest
problems associated with data collection, image recon-
struction, or some other factor.

We therefore consider the known structure-dependent
frequency response of the vasculature tree to represent a
fortuitous feature that can allow for the assignment of dy-
namic features to specific anatomic landmarks. We also
recognize that this scheme need not be limited to dynamic
features that occur at rest, or even to those that occur
naturally. For instance, the coincidence of dynamic fea-
tures with specific anatomic structures in response to
various provocations can also be considered. Thus it is
our view that the underlying vascular reactivity of tissue
can be taken as an independent contrast feature that can
aid in validating the accuracy of image results, and as a
parameter domain whose particulars could prove espe-
cially relevant to understanding a range of physiological
states.

In a series of recent preliminary reports, we have taken
a first step toward exploring this interesting relationship
in laboratory phantoms12 and on the human forearm.13–16

Here our goal has been to systematically explore, under
controlled conditions, the nature and quality of informa-
tion derivable from media made to experience dynamic
behavior in their optical properties. In one case the test
medium examined was an MR map of the breast, contain-
ing an included tumor, to which we assigned temporal
variations in the optical properties of the different tissue
types. In another case we examined a laboratory phan-
tom containing four inclusions, two of which we made dy-
namic. Results obtained demonstrate that measures of
temporal properties can serve to significantly enhance the
detectability of included objects that may otherwise be ob-
scured by the low spatial resolution of reconstructed im-
ages.

2. METHODS
A. Simulation Studies

1. Modeling of Tissue Hemodynamics in an MR Breast
Map
Figure 1 shows a finite element model of the MR breast
map used in these studies. Three different tissue types
are identified: adipose (dark gray), parenchyma (light
gray), and a centrally positioned tumor (black region).
For convenience we have extended the external boundary
of the actual breast map to conform to a circular geometry
having a diameter of 8 cm. Hemodynamic parameters
assigned to the segmented tissue types are listed in Table

Fig. 1. Medium used in simulation experiments. This finite el-
ement mesh was derived from a coronal section of a MR mammo-
gram, following segmentation into three tissue types.
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1. For each tissue type, a different mean value for tissue
blood volume (Vb) (i.e., the fraction of the tissue volume
that consists of blood) and oxygen saturation level (SO2

)
was assigned. The levels assigned constituted reciprocal
gradients in the two parameters. That is, the adipose
tissue had the highest SO2

(1.0, or 100% oxygenated) and
the lowest Vb (0.025), while the ‘‘tumor,’’ when present,
had the lowest SO2

(0.5) and the highest Vb (0.1). Inter-
mediate values were assigned to the parenchymal tissue.
Because vascular dynamics will occur throughout tissue,
we have modeled it by introducing sinusoidally time-
varying behavior in Vb levels for each of the assigned tis-
sue types. The amplitude of these variations was 10% of
the mean value. The gradient in frequency was
parenchyma . adipose . tumor. For the purposes of
this demonstration, we did not include in the model varia-
tion of modulation frequency, phase, or depth of modula-
tion within any tissue type.

The specific numerical values recorded in Table 1 for Vb
and SO2

are intended simply to accord with well-
established qualitative trends that are seen in the hemo-
dynamic properties of various tissue types, and as such
are chosen somewhat arbitrarily. Thus, since it is known
that white adipose tissue is relatively avascular and has a
relatively low aerobic respiration rate,17 it was assigned
the lowest Vb and highest SO2

. At the other extreme are
the hemodynamic properties of the included tumor. Be-
cause enhanced angiogenesis is frequently found in breast
tumors18 and flow through many tumor types is sluggish
relative to that of normal tissue,19 we have assigned to
this tissue the highest Vb and lowest SO2

.
The scattering coefficient ms also varied among tissue

types in the model medium. The gradient in ms was
tumor . parenchyma . adipose. The specific values
listed in Table 2 were chosen on the basis of recent esti-
mates of optical coefficient values for the indicated
tissues.20 It was also assumed that the scattering prop-
erties and the oxygen saturation levels of the breast were
time invariant.

For the purpose of computing photon-intensity distri-
butions in the tissue model, it is necessary to derive an
absorption coefficient ma for each tissue type from its Vb
and SO2

values. The manner in which this was accom-
plished is described in the Subsection 2.A.2.

2. Data Collection
The two-dimensional solver module of DANTSYS (dI iffu-
sion aIccelerated nI eutral particle transport code system)

Table 1. Mean Values of the Tissue Blood Volume
and Hemoglobin Oxygen Saturation, and

Modulation Frequencies Assigned to Each
Tissue Type in the Dynamic Simulations

Tissue Type
Fractional Blood

Volume (Vb)

Hemoglobin
Fractional

Oxygen
Saturation

(SO2
)

Modulation
Frequency

(Hz)

Adipose Tissue 0.025 1.0 0.12
Parenchymal Tissue 0.035 0.9 0.40
Tumor 0.1 0.5 0.06
was used to compute detector readings for the modeled
breast map.21 For computational convenience, the
medium that was actually modeled in these calcula-
tions was a square with 8-cm edges and partitioned into
129 3 129 equal-area square fine mesh cells. The ana-
tomical model shown in Fig. 1 was overlaid on this grid,
and each fine mesh cell had assigned to it the optical
properties of whichever tissue type occupied the majority
of its area. Fine mesh cells in the ‘‘corner’’ regions be-
tween the circle and square were assigned the properties
ma 5 ms 5 5 cm21. This absorption is sufficiently strong
that there is negligible reentry of light that exits from the
circle. Vacuum boundary conditions, the physical
equivalent of a Dirichlet mathematical boundary condi-
tion, were imposed at the edges of the square. The simu-
lated measurement configuration consisted of a total of 18
detectors positioned a distance 1/ms from the interior cir-
cular boundary and spaced at 20° intervals about the cir-
cumference, for each of six source positions that were
spaced at 60° intervals. In all computations the refrac-
tive index was spatially homogeneous within the medium,
and there was no index mismatch at the boundary. Un-
der these conditions, the solution to the steady-state dif-
fusion equation is not a function of the medium’s refrac-
tive index. Therefore it was not necessary to assign an
explicit numerical value to the medium’s refractive index.

Detection of the time-varying hemodynamic states of
the target media was achieved by simulating a two-
wavelength measurement, at 760 nm and 840 nm. An
idealized model of light-tissue interaction was employed,
in that (1) it was assumed that oxygenated (oxy) and
deoxygenated, or reduced (red), Hb are the only absorbing
species present in the target media and (2) the absorption
coefficients for whole blood were estimated by linear ex-
trapolation of data obtained from dilute solutions of puri-
fied Hb (i.e., effects of concentration, scattering, other sol-
utes, etc., were ignored). Consequently, the absorption
coefficient computed for a given tissue type [see Eq. (1) be-
low] is a simple linear combination of the mas of Hboxy and
Hbred. In said linear combination, ma is weighted by the
fraction of overall tissue volume that consists of blood
(i.e., Vb) and by the fraction of all Hb that is in each state
(i.e., SO2

for Hboxy, 1 2 SO2
for Hbred).

Numerical values for the monomeric millimolar extinc-
tion coefficients for both states of Hb (dimensions are
cm21 mM21) at these two wavelengths were obtained
from the spectrophotometry literature.22 The whole-
blood molar absorption coefficient max

l at wavelength

Table 2. Mean Values of the Absorption and
Scattering Coefficients Assigned to Each
Tissue Type in the Dynamic Simulations

Tissue Type

ma , cm21

ms , cm21760 nma 840 nma

Adipose tissue 0.0349 0.0605 7.0
Parenchymal tissue 0.0580 0.0827 10.0
Tumor 0.2700 0.2140 15.0

a Numerical values reported here are derived from the assigned blood
volume and oxygen saturation listed in Table 1, through formulas pre-
sented in Section 2.
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l for tetrameric Hb in oxygenation state x is related
to the corresponding extinction coefficient ex

l by max

l

5 4000 cex
l/M, where M is the molecular weight of Hb

and c is its concentration. The numerical values as-
signed to these latter quantities were M
5 64,500 g mol21 and c 5 150 g L21. Mean tissue ab-
sorption coefficients (cm21) were subsequently computed
for each tissue type at each wavelength via the formula

matis

l 5 Vb@SO2
maox

l 1 ~1 2 SO2
!mared

l #. (1)

The numerical values derived for the three tissue types,
at both wavelengths, are reported in Table 2.

Two simulation experiments were conducted, with the
target media differing only by the presence or absence of
the included ‘‘tumor.’’ In practice, this also could be in-
terpreted as measurements made before and after admin-
istration of a dye. In each experiment, detector readings
were computed at intervals of 0.5 s in the modulation
cycle. The three tissue frequencies reported in Table 1
are multiples of 0.02 Hz; further, the adipose and paren-
chyma frequencies are multiples of 0.04 Hz. The funda-
mental modulation periods for the media with the tumor
present and absent thus were 50 s and 25 s, respectively.
Accordingly, 100 sets of detector readings were computed
for the former medium, and 50 for the latter. Conse-
quently the resolution bandwidth for each medium was
the same as its fundamental modulation frequency, while
the Nyquist frequency was 1.0 Hz in both cases.

For each modeled wavelength, an additional set of de-
tector readings was computed from a homogeneous me-
dium having the same size, geometry, etc. as the target
media, and with msref

l 5 msadi

l , maref

l 5 ^maadi

l & (ref, adi, and
^ & denote the reference medium, adipose tissue, and the
mean value, respectively). We refer to this data set as
the ‘‘detector-reference medium’’ (DRM) result. For each
target medium and every source–detector pair (indexed
by i) these reference values (rDRM) i and the ‘‘instanta-
neous’’ detector readings ri(t) computed were processed
according to the function @Dd(t)# i 5 @ri(t)
2 (rDRM) i#/(rDRM) i to produce the relative detector read-
ing changes that were subsequently supplied to the image
reconstruction code as input (see Subsection 2.B.1 below).
Note that the temporal mean value ri for each detector
could have been employed as an alternative to this sort of
homogeneous fixed DRM, as is illustrated for the experi-
mental data and as we apply in practice.13–16 The time-
series analysis results obtained are not qualitatively af-
fected by the choice of DRM, and it is only for space-
limitation reasons that simulation-study results obtained
with only one type are presented below.

B. Laboratory Phantom Studies

1. Target Properties
All experiments were performed using a machined cup-
like vessel composed of white Delrin as the target. The
vessel had an external diameter of 7.6 cm, an internal
free-space diameter of 7.3 cm, and a height of 15 cm. In-
tralipid at a concentration of 2% v/v (i.e., a fivefold dilu-
tion of the 10% stock solution) was added to form the
background scattering medium; our estimates for the
background optical coefficients are ms8 ' 20 cm21 (Refs.
23–25), ma ' 0.02 cm21 (Ref. 26). The vessel was filled
to within 0.5 cm of the top with 500 mL of the background
medium. Suspended in the vessel was an apparatus sup-
porting up to four latex balloons positioned within a cru-
ciform frame. The balloons’ positions in the frame are
shown schematically in Fig. 2(a), and in a cross-sectional
sketch in Fig. 2(b). Figure 2(c) is a sketch of the posi-
tions of the optical fibers about the vessel, i.e., the data
collection geometry. Each balloon was filled with ap-
proximately 3 mL of 50-mM hemoglobin. Positioned
above each balloon was a 5-mL syringe serving as a res-
ervoir. Periodic variations in balloon volume were
achieved by pneumatic displacement, causing a maxi-
mum volume change of approximately 1 mL. Several dif-
ferent experiments of this sort have been performed, of
which we show only one here. The locations and dy-
namic properties of the balloons are shown schematically
in Fig. 3. Four balloons were present, two of which were
modulated at ;0.12 Hz, while the other two were station-
ary. In addition, the two modulated balloons were beat-
ing either in phase or 180° out of phase with each other.

2. Data Collection
Experimental data were collected using a recently de-
scribed CCD-based fast imager with an iris-type measur-
ing head.12,27 Time-varying data were collected at a rate
of 2 Hz, using a 6 3 6 binning factor (i.e., each detector
reading was the sum of the signals arising from each of 36
contiguous CCD pixels). The average intensity for each
spot $i.e., @r(t)# i% was then computed, by using a thresh-
olding algorithm. Two distinct sets of normalized detec-
tor readings were derived from the resultant data: In
one case the @r(t)# i were normalized to the mean value
obtained for each detector during the time-series acquisi-
tion [i.e., (rDRM) i 5 ri]; in the other, to the signal obtained
from the background medium in absence of the balloons
and frame. Each of these sets of normalized values was
subsequently used as the input data for image recovery.
For the reported studies, a total of six multiplexed source
positions, spaced at 60° intervals, were used to acquire
the tomographic data. The illuminating wavelength was
810 nm, its intensity was approximately 2 mW, and the
signal integration time was 10 ms. One hundred twenty
sets of detector readings were collected in each experi-
ment (60 s total acquisition time per source). Thus the
Nyquist frequency was 1.0 Hz and the resolution band-
width was 16.7 mHz.

C. Image Reconstruction
Images of the absorption coefficient, ma , and diffusion co-
efficient D, with D 5 @3(ma 1 ms)#21, at each of the mod-
eled illumination wavelengths, were simultaneously re-
covered through use of a previously described finite-
element (FEM)-based software package for optical
tomography.28 This employs a conjugate-gradient-
descent (CGD) algorithm to compute the solution to a lin-
earized perturbation equation (i.e., first-order Born ap-
proximation) in each element of an FEM mesh.
Reconstructions terminated when a preset convergence
threshold was met or after 2000 CGD iterations, which-
ever came first. The Jacobian operator and reference de-
tector readings were computed from numerical solutions
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Fig. 2. Sketch of the essential components of the apparatus used for the laboratory phantom experiments, showing (a) the mechanism
used to rhythmically inflate two balloons, (b) the position of the latex balloons in the cylinder, and (c) the geometric arrangement of
optical fibers about the cylinder.
of the photon diffusion equation, with extended Dirichlet
boundary conditions, for a homogeneous reference me-
dium that we refer to as the ‘‘image-reference medium’’
(IRM). The symbols used here for the operator and ref-
erence detector readings are WIRM and rIRM , respectively.
The vector rIRM has as many elements as there are detec-
tor readings associated with each time point (108 for the
examples presented here). WIRM is a matrix with the
same number of rows that rIRM has, while the number of
columns is equal to the product of the number of elements
in the FEM mesh (i.e., 1536) and the number of optical
coefficients being solved for in each element (i.e., 2).

The time-dependent vector of relative changes in detec-
tor readings [Dd(t), which was defined in Subsection
2.A.2 above] is transformed into a set of perturbations of
the detector readings computed for the IRM, Dr8(t), by
@Dr8(t)# i 5 @Dd(t)# i(rIRM) i . (That is to say, Dr8(t) is a
composite of three distinct detector readings: those from
the target medium, the DRM, and the IRM.) The image
reconstruction algorithm computes a solution to a modi-
fied perturbation equation Dr8(t) 5 WIRMDx8(t). While
Dx8(t) is not identical to the vector of perturbations in the
optical coefficients relative to the IRM, extensive trial
studies have shown that the image recovered has strong
positive spatial correlations with the true coefficient dis-
tributions for IRMs having properties sufficiently differ-
ent from those of the target medium that comparably
good results could not be obtained by using a conventional
perturbation formulation.28

1. Simulation Studies
The size and shape of the IRM chosen for analysis of these
sets of detector readings were the same as those of the
target media, while its optical properties were msref

l

5 msadi

l , maref

l 5 ^maadi

l & (i.e., for this demonstration, the
properties of the IRM are identical to those of the DRM,
although this is not a requirement for successful image
reconstruction28; it also is not essential that the IRM be
homogeneous).

For the purposes of the present report, the detector
readings were evaluated in the absence of added noise.
In other studies we have modeled more complex states
and time-varying functions.13–16,28 This includes the
limiting case of spatiotemporal coincident behavior in-
volving either simultaneous variations in ma and D ac-
cording to different functions (e.g., quasiperiodic, chaotic,
or stochastic time series)29 or to simultaneous variations
in Vb and SO2

(Ref. 30).
The formulas used to compute estimates of Vb and SO2

from the reconstructed values of matis

760 and matis

840 are easily

Fig. 3. Sketch showing the details of the arrangement of latex
balloons in the two laboratory phantom experiments, and the fre-
quencies and (where applicable) relative phases of the pulsating
balloons.
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derived by writing Eq. (1) for l 5 760 nm and for l
5 840 nm and then solving for the hemodynamic param-
eters in terms of the optical coefficients. When this is
done, the result is

Vb 5

~mared

840 2 maox

840!matis

760 2 ~mared

760 2 maox

760!matis

840

mared

840 maox

760 2 mared

760 maox

840 ,

SO2
5

mared

840 matis

760 2 mared

760 matis

840

~mared

840 2 maox

840!matis

760 2 ~mared

760 2 maox

760!matis

840 . (2)

Values for the hemodynamic coefficients were calculated,
by means of Eq. (2), in each pixel and at each value of the
time index.

The reconstructed images of the diffusion coefficients
D760 and D840 were not combined in any way; the image
time series for each wavelength was analyzed separately.

2. Laboratory Phantom Studies
Images were recovered by using the same reconstruction
algorithm as for the simulation studies. The IRM se-
lected for analysis of these data sets was homogeneous,
and its properties were ma 5 0.02 cm21, ms 5 15 cm21,
and a diameter of 8.0 cm. Because only one source illu-
mination wavelength was employed, estimation of the
phantoms’ Vb or SO2

could not be attempted. Typically, a
total of 120 images (30 s physical time for data acquisi-
tion) were obtained for each source position. Tikhonov
(ridge) regularization was used to minimize the ampli-
tude of artifacts; it was found empirically that 1 3 1026

was an effective value for the regularization parameter.
Apart from this, no image enhancement scheme or update
procedure was used.

3. Note Regarding Preparation of Contour Maps
The FEM mesh that was used for all inverse computa-
tions computed D and ma values in 1536 irregularly
spaced triangular finite elements, all of which lie within
the circular boundary shown in Fig. 1. In preparing the
contour maps presented below in Results, this mesh was
converted to a 40 3 40 square grid by employing a linear
interpolation algorithm31 based on a Delaunay
triangularization32 of the FEM mesh. One of the consid-
erations that went into the selection of the rectangular
grid size was minimizing the reduction in spatial resolu-
tion that inevitably would result from these operations.
In the contour maps that were finally produced, signifi-
cant artifacts appear only in the vicinity of the circular
boundaries of the target media (see, e.g., Fig. 10 below),
and even these are not prominent in every case.

D. Time-Series Analysis of Detector Readings and
Images
Where indicated, standard time-series analysis
methods33,34 were used to compute the frequency and
time-correlation response of the detector or image data.
The analysis included computation of cross-correlation
and its spectral components, the cross-spectral density
and coherence functions. An elementary FORTRAN code
was used to compute the target-versus-image correla-
tions, while library functions in the signal analysis tool-
box of MATLAB 5.2, Release 10 (The Mathworks, Inc.,
Natick, MA) were employed for all other time-series
analysis computations. A brief description of these func-
tions follows.

Consider two time-varying functions u(t) and v(t) that
are sampled at a set of discrete times tn , where n
5 1 ,..., N and tn 2 tn21 5 Dt is a constant. (All formu-
las that follow can be adapted to the case of nonconstant
time intervals, but this was not necessary for analysis of
data considered in this report.) Then we define

un [ H u~tn!, n 5 1 ,..., N

0, n , 1 or n . N
,

vn [ H v~tn!, n 5 1 ,..., N

0, n , 1 or n . N
,

and use the symbols ū and v̄ to denote the mean values of
these two discrete time series, and su and sv for their
standard deviations.

For each N-point time series un and vn , the MATLAB
‘‘fft(x)’’ function35 was used to compute the discrete Fou-
rier transforms (DFTs)

Uk
R 1 jUk

I 5 (
n51

N

un exp@2j~2knp/N !#,

Vk
R 1 jVk

l 5 (
n51

N

vn exp@2j~2knp/N !#, (3)

where j 5 A21, the superscripts R and I denote the real
and imaginary parts, respectively, of the DFT, and the
subscript k is the frequency-component index (k
5 0,1 ,..., N/2 for N even; 0,1 ,..., (N 2 1)/2 for N odd).

The formal definition employed for the cross correlation
(cc) between the two time series is

ccuv~m ! [
1

~N 2 1 !susv
(
n51

N

~un 2 ū !~vn1m 2 v̄ !,

(4)

where the parameter m is called either the ‘‘delay’’ or the
‘‘lag.’’ It should be noted here that different authors use
different definitions for cross correlation. In this report
the definition of Jenkins and Watts34 is used, in that Eq.
(4) entails subtraction off of the mean values and division
by the product (N 2 1)susv to produce a dimensionless
quantity whose absolute value is <1. This convention is
not universal—Bendat and Piersol,33 for example, define
cross correlation as the unnormalized function Ruv(m)
[ (n51

N unvn1m , and refer to the quantity defined in Eq.
(4) as the ‘‘correlation coefficient function’’—but is appro-
priate for our purposes. We have the capability to calcu-
late cross correlations either between the time series of
reconstructed images in two image pixels, or between the
image series in one pixel and any one detector-readings
time series. Subsequent to appropriate preprocessing of
the input time series, the Matlab ‘‘xcorr(x,y,‘option’)’’
function,36 with ‘‘option’’ set to ‘‘coeff,’’ is used to perform
these computations.

The cross-spectral density (CSD) function Guv of the
time-series pair u and v is the Fourier transform of their
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cross-correlation function.33,34 It is preferable in practice
to compute Guv directly from the DFTs U and V. Opera-
tionally, the full N time-point time series u and v are first
subdivided into some number nd of ‘‘records,’’ with N/nd
time points per record. (The ‘‘correct’’ value for nd is
application-dependent, and choosing it is an art.37 In-
creasing nd leads to more accurate coherence (v.i.) esti-
mates, but at the cost of increased resolution bandwidth.)
A DFT computation—U(n), V(n), n 5 1,2 ,..., nd—is
carried out for each record, and the cross-spectral density
estimate is

Guv~k8! 5
2

N (
n51

nd

@Uk8
R

~n ! 2 jUk8
I

~n !#@Vk8
R

~n ! 1 jVk8
I

~n !#,

(5)

with k8 5 0, 1 ,..., N/(2nd) for N even; 0, 1 ,..., (N
2 1)/(2nd) for N odd. Just as for the DFTs, the real and
imaginary parts of the CSD are converted to amplitude
and phase for display purposes. Apart from the value
that it has in itself, the result of the CSD computation is
then used to compute the coherence guv

2 between u and v,
via the formula

guv
2 ~k8! 5

Guv~k8! • Guv* ~k8!

Guu~k8! • Gvv~k8!
. (6)

The asterisk superscript in Eq. (6) denotes the complex
conjugate, and the quantities in the denominator are the
autospectral densities of u and v. The latter are identi-
cal to the power spectra of u and v. It is apparent from
the form of Eq. (6) that guv

2 is dimensionless; proof that, in
addition, 0 < guv

2 < 1 is straightforward.33 Our spectral
density and coherence computations are performed by use
of, after appropriate preprocessing of the input time se-
ries, the Matlab functions ‘‘csd(x,y,nfft,fs,‘dflag’)’’ 38 and
‘‘cohere(x,y,nfft,fs,‘dflag’).’’ 39 For the examples presented
in Results, the ‘‘dflag’’ parameter was set to ‘‘none.’’

While the value of ccuv for a given time lag takes into
account the impact of all frequencies simultaneously, Guv
and guv

2 contain a wealth of frequency-dependent informa-
tion regarding the manner in which the two time series u
and v are or are not related. Peaks in the amplitude of
Guv indicate those frequencies at which there is appre-
ciable power in both u and v, while the phase shows, at
each frequency, whether u leads or lags v, and by how
much.34 There are several equivalent interpretations for
guv

2 : It is analogous to a frequency-dependent correlation
coefficient34; it is a measure of the fraction of the total
power in v that is due to linear contributions from u, at
each frequency33; it is an estimate of the probability, at
each frequency, that both u and v are responses to a com-
mon cause; it is a measure of the degree to which the
phase difference between u and v at the beginning of the
measurement period persists throughout the duration of
the period (the closer guv

2 is to 0, the more rapidly the
phase difference changes).40

Meaningful estimates of Guv can be obtained with nd
5 1 in Eq. (5). However, nd . 1 is a necessary condi-
tion for valid computation of guv

2 via Eq. (6); taking nd
5 1 leads to a meaningless result of guv

2 5 1.0 at all
frequencies.33 The standard errors of the computed esti-
mates of Guv and guv

2 are proportional to nd
21/2 (Ref. 33).
Therefore when working with experimental or clinical
data it is important to select a value for nd that ensures
that these errors are acceptably small. However, be-
cause the demonstrational studies reported on here are
based on simulation data that is perfectly periodic and
noise-free (Guv and guv

2 results are not presented for the
experimental data), there is no random error in the com-
puted CSDs and coherences, and we used nd 5 1 for Guv
computations and nd 5 2 for guv

2 computations. Thus
the coherence results presented below can be interpreted
as a measure, at each frequency, of the extent to which
the phase relationship between two time series is differ-
ent in the first and second halves of the full observation
period.

3. RESULTS
A. Simulation Studies
As indicated, a goal of this study was to test the hypoth-
esis that the occurrence of dynamic behavior in optical co-
efficients can serve to aid in assessing the qualitative ac-
curacy of reconstructed features present in complex
backgrounds. To explore this we have computed a time
series of image data from a segmented MR map of the
breast to which we have assigned time-varying behavior
in Vb to the various tissue types. This was accomplished
by assigning the appropriate values for ma to the corre-
sponding tissue types that would produce the desired dy-
namic behavior in Vb based on a two-wavelength mea-
surement. The assigned hemodynamic and optical
coefficients are listed in Tables 1 and 2, respectively.

Already cited is the concern regarding the low spatial
resolution of images obtained from complex backgrounds.
An example of such results is shown in Fig. 4. [It is
worth noting that we have achieved, as have others,41,42

improved image quality using more-intensive computa-
tional efforts (e.g., Newton-type updates). In practice,
however, such efforts may have limited value owing to the
computational burden they present. Besides, even with
such efforts, we are unaware of any reports claiming good
image quality from physiological measurements.] Panel
(a) shows a contrast map of time-averaged Vb for the as-
signed target medium containing a centrally located in-
cluded tumor. The upper limit of the plotted range in
Fig. 5(a) is 0.05, even though ^Vb& 5 0.1 in the tumor (see
Table 1), only because of practical limitations associated
with displaying these results in the form of a gray-scale
map. Panel (b) shows the contrast map of the time-
averaged reconstructed value for Vb . Comparison re-
veals elevated levels of Vb in the vicinity of the tumor and
surrounding parenchyma. Significantly, while this fea-
ture is qualitatively correct, the presence of the tumor is
by no means obvious. Panel (c) shows that a qualita-
tively different result is obtained from examination of the
same target medium, but lacking the tumor. Individual
images in each time series, furthermore, qualitatively
closely resemble the mean images shown. This indicates
that the low spatial resolution seen in the figures is not a
blurring phenomenon due to dynamic behavior, but origi-
nates from the input data and reconstruction algorithm.
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The tumor’s presence is clearly revealed by computing
a difference image [Fig. 4(b) minus Fig. 4(c)], as shown in

Fig. 4. (a) mean value, in each pixel, of Vb in the tumor-bearing
target medium averaged over all 100 time points during which
the absorption coefficients of the tissues were modulated. (b)
and (c) ^Vb& images of the tumor-bearing and tumor-free target,
respectively.
Fig. 5. Results (not shown) similar to those in Figs. 4(b)
and 4(c) were obtained for images corresponding to SO2

,
D760, or D840. In practice, such differencing may be pos-
sible through the use of injectable dyes that are selec-
tively retained by the vasculature associated with a
tumor.43 As this constitutes an invasive procedure, even
if minimally so, the question of whether or not it is pos-
sible to identify the presence of the tumor from examina-
tion of data derived from only the medium containing the
tumor retains its importance.

Results in Fig. 4(b) demonstrate that qualitatively ac-
curate information (e.g., location and gradient in Vb) re-
garding the tumor is present in the image data, albeit
mainly obscured by the low spatial resolution. In prac-
tice, further degradation of image quality can be expected
from artifacts originating from noise and other uncertain-
ties of measurement. As is, it seems doubtful that recov-
ered image quality [Figs. 4(b) and 4(c)] would prove useful
for most clinical applications. This leads to the question
we are interested in examining: Given such uncertain-
ties, can information specific to the tumor, that better re-
veals its presence, be derived from examination of a time
series of image data? As indicated in Section 2, one no-
table feature we have incorporated into the dynamic
simulation is the known sluggish state of perfusion in the
vicinity of solid tumors. This was modeled by assigning a
diminished SO2

, elevated Vb , and reduced rate of rhyth-
mic activity to the tumor. We note that the last, while
perhaps not naturally occurring, could be imposed by a
simple manipulation (e.g., rhythmic mild compression) of
the tissue. Alternatively, the conditions considered could
be taken as a crude model of the known structure-
dependent frequency response of the vasculature,
wherein the included object corresponds to some particu-
lar localized vasomotor activity that is either naturally
occurring44 or induced.

An indication that additional information regarding
the modeled hemodynamic state is present in the recov-
ered image time series is shown in Fig. 6, panels (a) and

Fig. 5. Mean value of the differences between images of the
tumor-bearing and tumor-free media, ^DVb&.
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Fig. 6. Cross correlations, for zero time lag, between Vb time se-
ries of the target media and of the reconstructed images. (a)
map of ccuv(0) for the tumor-free medium, where u is the target
Vb and v is the image Vb ; (b) analogous map, for the tumor-
bearing medium; (c) bar graphs of the cumulative percentage of
pixels for which ccuv(0) is between 21 and (0.1n 2 1),
n 5 1,2 ,..., 20, for both media.
(b). These maps display the zero-time-lag cross-
correlation, in every pixel, between the Vb time series in
the target and reconstructed image series for tumor-free
and tumor-containing media, respectively. Inspection re-
veals that the temporal variations between target and re-
constructed images are positively correlated in almost all
pixels [95.5% in Fig. 6(a), 91.1% in Fig. 6(b)] with a cor-
relation value . 0.8 in the majority (70.1%, 66.5%). This
implies a nearly linear relation, in these pixels, between
the Vb in the target and those of the reconstructed im-
ages. The accompanying bar graph in Fig. 6(c) is a plot of
the cumulative percentage of pixels for which the correla-
tion is between 21 and (i 2 10)/10, where
i 5 1,2 ,..., 20. Inspection shows, quantitatively, just
how few image pixels are uncorrelated or negatively cor-
related with their corresponding target medium pixels.

We note that there is an anomalous region in the lower
right portion of Fig. 6(a), where several pixels have nega-
tive target/image correlations (the strongest negative cor-
relation in any one pixel is 20.73). The phenomenon is
even more striking in Fig. 6(b), wherein negative correla-
tions, some approaching 21, are seen near the center and
about the tumor. Careful comparison of these figures re-
veals that the negative correlations are restricted to re-
gions where large variations in the medium’s properties
occur on a small spatial scale: the medium-air boundary,
the reentrant border of the large parenchyma ‘‘island’’ in
the lower right region, and the complex parenchyma–
adipose–tumor–adipose–parenchyma–adipose transition
in the center. The same behavior was seen in the maps
of target/image diffusion-coefficient correlation (not
shown) as well, with an even more pronounced tendency
toward negative correlations in pixels near the medium-
air boundary. While a complete accounting of this phe-
nomenon is lacking, we believe that it simply is a conse-
quence of limited spatial frequency content of the FEM
mesh used. Use of a finer mesh presumably would yield
even better temporal results.

Upon first consideration, it might seem that the results
in Figs. 4 and 6 are irreconcilable. How can it be that the
reconstructed time-series images are such crude repre-
sentations of the target media and the very same images
and target are so strongly positively correlated? The rea-
son lies in the fact that correlation is insensitive to errors
in scale. This can be grasped intuitively by considering a
hypothetical image time series wherein every pixel is
quantitatively inaccurate compared to the target, and the
magnitude of the error differs in every pixel. In such a
case, the individual images will not appear at all similar
to the target. If, however, the relative error in each pixel
is consistent throughout the time series, always underes-
timating or overestimating the true value of the optical or
hemodynamic parameter by the same fraction, then the
temporal variations in every pixel will be perfectly corre-
lated with those of the target.

An implication of the preceding observations is that the
application of well-established time-series analysis tech-
niques to an optical image time series might well permit
the extraction of dynamic features with an accuracy and
spatial resolution superior to those obtained for the recon-
structed optical or hemodynamic parameters per se. This
expectation is borne out by results shown in Fig. 7. Here
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we show a map of the amplitude of the DFT at the tumor
modulation frequency (0.06 Hz), computed from the com-
plete time series of 100 images of Vb . Significantly, com-
parison of this map with the difference image shown in
Fig. 5 reveals the two results are qualitatively nearly
identical. The critical difference here, however, is that
correct identification of the tumor’s presence was revealed
without resorting to any artificial differencing methods.
Rather, its presence is revealed from analysis of only the
tumor-containing medium’s image time series.

The preceding observation has led to further consider-
ations. For instance, it is well appreciated that any dif-
ference between two time series, irrespective of the physi-
cal origin, may serve to distinguish them. When applied
to the image, this indicates that time-varying behavior
associated with different regions might be distinguished
just as well or even better, thereby improving spatial con-
trast, by the absence of temporal features in a particular
region. Accordingly, we have examined the image time
series’ frequency-dependent DFT amplitude maps and
paid close attention to the ‘‘mixing frequencies,’’ which are
the sums and differences between any two of the modula-
tion frequencies assigned to the individual tissue types.
Presented in Fig. 8 is a particular frequency component
(amplitude and phase map) of the DFT of the Vb time se-
ries. The selected frequency, f 5 0.52 Hz, is a mixing fre-
quency equal to the sum of the parenchyma and adipose
modulation frequencies (see Table 1). Inspection shows
that the presence of tumor is clearly revealed in both the
amplitude and phase maps. Specifically, the greatly re-
duced 0.52-Hz amplitude in the center of Fig. 8(a) reveals
the presence of the tumor, as does the existence of a local-
ized, well-defined central region of negative phase within
the otherwise mainly positive phase map in Fig. 8(b). It
should be pointed out that the displayed phase range was
restricted to 290°–190° solely because of practical limi-
tations associated with plotting these results in the form
of a gray-scale map. When the same data are displayed
as a colored map, the large (;100°) phase difference be-
tween the regions corresponding to the tumor and healthy

Fig. 7. DFT amplitude map of the Vb images of the tumor-
bearing target medium. The frequency selected for display pur-
poses is 0.06 Hz, which is the tumor modulation frequency.
tissues is easily seen, even if the full 2180° to 1180°
range is included.

Significantly, the feature contrast in Fig. 8 is on the or-
der of one hundred times that revealed in the optical con-
trast maps. Note also that the size, shape, and sharp-
ness of the edge detected for the tumor are superior to
those seen in the mean-difference image (Fig. 5) or the
tumor-frequency DFT amplitude (Fig. 7) and are compa-
rable to those of the ‘‘ideal’’ target [Fig. 4(a)].

While striking, the result shown in Fig. 8 considers a
signal whose amplitude frequently is low (i.e., a mixing
frequency). It would be better to produce a map that is
equivalent in terms of its contrast level but that makes
use of a large-amplitude signal. This criterion does not
by itself limit which of the many time-series functions
could be applied. A useful consideration in the context of
investigating hemodynamic states is the previously cited
structure-dependent frequency response of the vascula-

Fig. 8. DFTs of the Vb images of the tumor-bearing target me-
dium. In both panels the frequency selected for display pur-
poses is 0.52 Hz, which is the sum of the modulation frequencies
of the adipose and parenchyma tissues. (a) DFT amplitude; (b)
DFT phase.
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Fig. 9. Maps of cross-spectral density between the temporal trend in a particular ‘‘index pixel’’ and those of all pixels in the target
medium, for the Vb images. For all results shown here, index pixel is at coordinates (20,20) (i.e., center of image), and the frequency
component displayed is f 5 0.52 Hz (i.e., sum of adipose and parenchyma modulation frequencies). (a) amplitude, target with tumor; (b)
phase, target with tumor; (c) amplitude, target without tumor; (d) phase, target without tumor.
ture. For instance, it is clear that tissue perfusion is, in
some manner, a coordinated response. Certainly there
are many disease processes that might interfere with
such activity, and knowledge of the spatial locations of
such anomalous regions would be useful. Such relation-
ships are well revealed by a cross-spectral density analy-
sis. For example, it is known that the respiratory
rhythms of the vasculature, observed within many tis-
sues, do not arise locally but result from central mecha-
nisms that are common to all points within the image
field. It would therefore be expected that the interpixel
CSD would have a large amplitude at that frequency, for
any two pixels, and that its phase would be largely inde-
pendent of the duration of the measurement period or of
the choice of the parameter nd in Eq. (5). Failure of the
CSD to meet either of these two expectations might serve
as a signature for some pathological process.

Selected results of such an analysis performed on the
image series are shown in Fig. 9. Panels (a) and (c) show
the amplitude of the CSD between an index pixel located
at the center of the image grid and all other pixels, for the
tumor-containing and tumor-free media, respectively. As
with other measures of temporal features, we observe
that the tumor is clearly revealed when it is present and
that the contrast between various regions is markedly re-
duced when it is absent. An even clearer identification of
the presence or absence of the tumor can be seen in the
phase maps [panels (b) and (d)]. Note the remarkable
sharpness of the transition in phase that occurs within a
short distance beyond the physical edge of the tumor. It
is worth emphasizing that the selected pixel in no way bi-
ases the derived contrast maps. Choice of any other pixel
in the image as the index will influence only the absolute
values of the CSD amplitude or phase, and has no effect
on the qualitative appearance of the map.

A similar, but perhaps even more impressive, result is
shown in Fig. 10, where we present maps of the interpixel
coherence functions between the index pixel (row 11, col-
umn 13) and all other pixels in the images of Vb . In or-
der to attain the two objectives of decreasing the reso-
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lution bandwidth (which, because nd 5 2 when comput-
ing coherences, is twice that obtained in the DFT and
CSD computations) and generating coherence functions
that have the same frequency components for both media,
we worked with the periodic extension of each image time
series [i.e., Vb(n 1 100) 5 Vb(n) for the tumor-
containing medium, Vb(n 1 50) 5 Vb(n) for the tumor-
free medium], with each one’s length set to N 5 105 time
points. This is a justifiable artifice because in this way
we model real-world conditions (such as were encountered
in collecting the experimental data), in which the fre-
quency structure of the medium is not known a priori and
the length of the measurement time series essentially is
arbitrary. The particular results shown in the figure are
the f 5 0.54 Hz (which is, for numerical reasons, as close
as we can come to the sum frequency of the adipose and
parenchyma tissues in this calculation) component of the
computed coherence of the image time series for each tar-
get medium. The result for the tumor-containing me-

Fig. 10. Selected frequency component of the coherence func-
tions computed by comparison of the temporal trend in a particu-
lar ‘‘index pixel’’ and those of all pixels in the target medium, for
the Vb images. All results shown here are for frequency of 0.54
Hz. (a) target medium contains tumor, index pixel is row 11, col-
umn 13 (i.e., outside tumor); (b) target medium without tumor,
index pixel is row 11, column 13.
dium is shown in panel (a). It is seen that the index pixel
is strongly coherent with all other pixels except those ad-
jacent to the exterior boundary or in the region where the
tumor lies, while its coherence with pixels in the latter
area is close to zero. In fact, the size, location, and shape
of the tumor are almost perfectly recovered. In the cor-
responding result for the tumor-free medium, shown in
panel (b), the index pixel is strongly coherent with almost
all the other pixels. In addition, these results directly
demonstrate that detection, location, and sizing of the tu-
mor, if it is present, can be accomplished without any
prior knowledge of its presence or whereabouts. In Sub-
section 3.B we present experimental results confirming
the ability to image dynamic features in dense scattering
media.

B. Laboratory Phantom Studies
Four balloons were present in the experiment, two of
which were static while the other two were modulated at
a fixed frequency, with a relative phase of either 0° or
180°. An example of the reconstructed absorption image
obtained at a single time point is shown in Fig. 11, panel
(a). Four objects clearly are present, but they are not
well resolved and their true diameters are not accurately
recovered. The DFT amplitude at the 0.12-Hz modula-
tion frequency is seen in panel (b). Shown is the fact that
only two of the balloons are modulated at this frequency.
Also evident is that the spatial resolution of the DFT map
is considerably improved compared with the map shown
in panel (a). The phase portions of the DFTs at 0.12 Hz
for the in-phase and the 180°-out-of-phase cases are
shown in panels (c) and (d), respectively. The correct
phase relation between the two modulated balloons is re-
covered in each case. [Amplitude, panel (b), is shown for
only the latter case, because, as expected, the correspond-
ing map for the former is nearly identical.] In a similar
experiment that has been reported elsewhere,12 it was
shown that the dynamic balloons could be distinguished
on the basis of differences in frequency as successfully as
they were here on the basis of differences in phase.

Also seen in Fig. 11, panels (c) and (d), are near-surface
regions where the phase values are markedly different
from those in the interior. Note that these occur in re-
gions where the amplitude is nearly zero [cf. panel (b)].

4. DISCUSSION
A confounding feature of optical imaging studies of tissue
is that the image quality can be sufficiently limited that it
may be difficult to easily distinguish between artifact and
true features recovered with low resolution. Compound-
ing this is the fact that, owing to vascular reactivity, fluc-
tuations in tissue blood volume can introduce consider-
able variability in the measured intensity levels. Thus,
depending on how data are acquired, the repeatability of
information derived from tissue studies could be limited.
We recognize, however, that because the vasculature ex-
hibits a structure-dependent frequency response, it
should be possible to correlate measures of the temporal
variability of the vascular response to specific features in
the image data, thereby establishing a self-referencing
scheme. Thus for example, as we have recently shown,
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Fig. 11. Results from laboratory phantom experiment (see Figs. 2 and 3). Prior to reconstruction, each individual detector reading was
normalized to the reading obtained for that detector when the balloons and frame were removed from the phantom. (a) image recon-
structed from the 6 3 18 detector readings acquired at one specific time point. (b) 0.12-Hz component of the amplitude of the image
sequence’s DFT, 180° phase difference between oscillating balloons; (c) 0.12-Hz component of the phase of the image sequence’s DFT, no
phase difference between oscillating balloons; (d) 0.12-Hz component of the phase of the image sequence’s DFT, 180° phase difference
between oscillating balloons.
the locating of where in the cross-sectional view a cardiac
frequency is found can be used to identify the position of
the major arteries.13–16 We also recognize that such
measures, in addition to aiding in validating the accuracy
of imaging results from tissue, can in and of themselves
provide a wealth of new information regarding the state
of vascular dynamics. This follows, as hemoglobin,
which is usually compartmentalized in the vascular
space, is a principal contrast feature of tissue in the NIR
region. It is instructive to consider what might be
learned from investigations of vascular dynamics by opti-
cal tomography, in particular as it relates to the quality of
information derivable from alternative schemes that have
been suggested for use in optical imaging.

A. Significance of Cross-Sectional Imaging of Dynamic
Behavior by Optical Tomography
Vascular frequencies arise in response to cardiac, respira-
tory, vasomotor, and local metabolic influences. A no-
table feature of these is that they are not uniformly dis-
tributed among the various components of the vascular
tree, but instead exhibit structure dependence. Thus,
whereas the cardiac frequency is mainly restricted to ar-
terial structures, the vasomotor and respiratory frequen-
cies are principally limited to the microvessels and struc-
tures associated with the venous circulation, respectively.
Presently, measures of these rhythms are limited mainly
to investigations of vascular structures lying near the sur-
face, primarily microvessels, by laser Doppler
flowmetry,45 or of larger subsurface vessels by Duplex
ultrasonography.46 Also available for measuring vascu-
lar rhythms is the spatially integrating method of pulse
volume recording achieved using pneumoplethysmo-
graphy47 or photoplethysmography.48 Thus far, however,
the ability to spatially discriminate among the various
vascular frequencies in a cross-sectional view, especially
in the case of large tissue structures, has been lacking.
As demonstrated by results presented here, measures of
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dynamic behavior can be used to detect features with high
contrast that otherwise might remain obscured owing to
the limited spatial resolution. This is supported by re-
sults for the modeled tumor and by those for the labora-
tory phantom.

As noted, it is our view that the potential to distinguish
the dynamics of different components of the vascular tree
could hold considerable significance for the characteriza-
tion of various physiological states and disease processes.
For instance, the presence (or absence) of a cardiac fre-
quency with respect to known anatomic landmarks (e.g.,
major arteries) could provide a measure of the patency of
localized arterial flow. Abnormally low-amplitude sig-
nals might suggest the presence of arterial stenosis.
Clinically, such measures could hold considerable value,
especially in the evaluation of peripheral vascular disease
of the lower extremities, a problem frequently encoun-
tered with diabetics. Presently, such measures are per-
formed using the method of pulse volume recording.49

This method, however, cannot identify which vessel is in-
volved. To achieve this, x-ray angiography typically is
performed, which requires the infusion of a contrast
agent—a strategy not without risk, especially in patients
with renal insufficiency. Imaging based on dynamic op-
tical measurements, on the other hand, might allow for
sufficient localization of the involved structure without
the need for any external contrast agent. Indirect evi-
dence that such measures may prove feasible comes from
recent studies we have conducted on the human forearm.
In one case, already noted, we observed that spatial maps
revealing the amplitude of the cardiac frequency, derived
from analysis of an image time series, coincided well with
the correct locations of the radial, interosseous, and ulnar
arteries.13–16 In another study involving simultaneous
measurements, we observed that graded occlusion of the
brachial artery in the upper arm is accompanied by selec-
tive reduction in flow rates in the radial artery (measured
by duplex ultrasonography) and by reduced blood volume
in the vicinity of the radial and ulnar arteries in the fore-
arm (measured by dynamic optical tomography).50

Evaluation of altered perfusion states might also prove
helpful for the detection and localization of tumors, owing
to their known altered vascular state.44,51 Such mea-
sures could be aided by various homeostatic challenges
that serve to alter local blood flow. Simple examples
could include deep breathing,4 mild elevation of blood
pressure by exercising a handgrip,52 or monitoring the re-
sponse to a cold shock.53 Recently, we have shown that
such manipulations, all of which are significantly less in-
vasive than, say, administration of an injectable contrast
agent, can induce significant changes in the spatiotempo-
ral dynamics of the vasculature in the human
forearm.14–16

B. Imaging of Chaos of Vascular Dynamics
Another feature of the vascular response that is receiving
increasing attention, for which dynamic optical measures
could have substantial value, is the accumulating evi-
dence that the temporal variability of vasculature is cha-
otic in nature.54,55 These signatures, which are widely
observed in biology, arise from nonlinear interactions of
controlling variables and exhibit the property of sensitiv-
ity to initial conditions. The existence of such behavior
has important implications in the understanding of dis-
ease processes as well as for the approaches taken for
therapy.56 For instance, the approach needed to control a
chaotic system is quite different from that for a linear sys-
tem, wherein the system response is proportional to the
magnitude of the input stimulus. Thus it has been pro-
posed that more-effective therapies can be realized from a
series of well-timed perturbations rather than from the
standard approach of applying a constant stimulus, the
method commonly used in many pharmacological
interventions.57 Also of interest, and related to this, is
the seemingly general finding that the occurrence of cha-
otic behavior in physiological systems is a sign of health,
and its absence is a sign of disease. For instance, it is
known that heart rate variability is chaotic.58,59 Signifi-
cantly, loss of this signature with the appearance of peri-
odic oscillations is among the strongest predictors of sud-
den cardiac death.59 A similar phenomenology has been
observed in infants who succumb to sudden infant death
syndrome.60 In this case, the normally chaotic respira-
tory rate becomes periodic prior to the fatal incident.
Similarly, during epileptic seizures, electroencephalo-
graphic recordings exhibit a transition from chaotic to pe-
riodic activity.61 Presently, the capacity to monitor such
behavior in vascular structures is limited principally to
near-surface measures using laser Doppler methods.
Measures of temporal variability in the vascular caliber
and flow motion for larger vessels is possible using Du-
plex ultrasound, but such measures are insensitive to the
activity of the microvasculature and do not provide for
full cross-sectional views. Moreover, because of attenua-
tion by the skull, they are mainly excluded from investi-
gation of the vascular response of the brain. Optical
measures, on the other hand, are quite sensitive to the
microcirculation and, as we have reported, can also be
used to detect the temporal variability of larger vessels.

It is our view that the ability to monitor the dynamic
response of the vasculature, including the microcircula-
tion, could have far-reaching implications for the under-
standing of fundamental physiological processes depen-
dent on the vascular response, and for the understanding
of disease processes and their treatment. Significantly,
in this regard, we have recently demonstrated the ability
to image, with high fidelity, complex coincident spatiotem-
poral hemodynamic states, including chaotic states, by
simulation28 and have also obtained results from dynamic
imaging studies on the human forearm that are consis-
tent with the reported nonlinear chaotic properties of the
vasculature.13-16,50

There are still other important implications to be con-
sidered with regard to the value of measuring the time-
varying properties of hemoglobin states in a cross-
sectional view. For instance, the details of the measured
dynamics at the various vascular frequencies need not be
the same for measures of blood volume and blood oxygen-
ation. In addition, given the known heterogeneity of tis-
sue perfusion,62 even in healthy tissue, it seems likely
that whatever features do exist will themselves be spa-
tially varying. Moreover, in a case where altered dynam-
ics in either parameter is found, it could indicate altered
local metabolic states, the existence of more central con-
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trol deficits (e.g., autonomic, cardiac or respiratory), or
both. Hence it would seem that the suggested measures
could provide for an assessment of an integrated physi-
ological state, and possess important features pertaining
to tissue/vascular coupling. In fact, it also seems likely
that whatever spatiotemporal features exist will respond
to a host of pharmacological agents and other treatment
modalities. Such measures could also serve to identify
desired or undesired responses to therapy.

C. Strategies for Data Collection
The implications of the preceding discussion notwith-
standing, given the known technical and mathematical
difficulties associated with optical tomography, an incli-
nation to regard the temporal variability of tissue as an
undesirable feature that should be experimentally mini-
mized or averaged out is perhaps understandable. Sev-
eral factors combine to make this an apparently sensible
way to proceed. For example, many of the optical tomog-
raphic methods proposed in the past decade have been
analoges of techniques (e.g., diffraction tomography) that
were initially developed for use in applications where the
medium under investigation is effectively static. Fur-
ther, in other medical imaging modalities already in clini-
cal use, either static anatomical information is that which
is sought (e.g., x-ray CT, MRI), or the required data acqui-
sition time is long relative to the time scale of most physi-
ological fluctuations (e.g., PET,63 SPECT64). 65 The issue
of time scale raises the question of which measurement
type, static or dynamic, is better suited for optical imag-
ing studies of tissues.

As in other imaging modalities, which is more suitable
will depend strongly on the expected temporal variance of
the contrast features under investigation. If these are
time invariant, then the acquisition time is often not a
critical parameter. Limited acquisition times are fre-
quently considered as a matter of convenience. Alterna-
tively, if the contrast of the features of interest exhibits
significant temporal variability, then considerations of ac-
quisition time can be important. For instance, measure-
ments performed on a time frame that is much longer
than the time scale of the temporal fluctuations will pro-
duce effectively blurred, low-contrast images having de-
graded information value (i.e., low diagnostic sensitivity
and specificity). In this regard, many of the data collec-
tion strategies proposed for optical tomography are poorly
suited to acquire detector readings on a time scale that
measurement of dynamic properties of tissue would de-
mand. This limitation is present, for instance, in tech-
niques that are based upon measurement of the temporal
spread of light pulses, or on related parameters such as
the mean time of flight.66,67 While the temporal point
spread function in principle provides the most and best
information possible from which to deduce the internal
structure of a scattering medium, the practical require-
ment for signal averaging in the case of large tissue struc-
tures imposes acquisition times on a time scale of min-
utes. The difficulty with this is that it conflicts with well-
known features of vascular physiology, in particular the
vasomotor response. This is characterized by perfusion
of first one region, then another. Eliminating its influ-
ence by adopting time-averaging methods will adversely
impact on the available contrast due to hemoglobin,
which is the very feature many seek to measure. In fact,
we suspect that this is what accounts for the nearly com-
plete absence of absorption contrast in the cross-sectional
optical images of the forearm recently presented by Hill-
man et al.,10 who reported requiring several minutes to
complete a single scan.

In contrast, a dc measurement, while theoretically less
informative than a time-resolved measurement,68 has the
advantage that it can allow for tomographic measure-
ments on a time scale much shorter than that of the tem-
poral variations in the vascular response. In fact, we
have recently described instrumentation based on such
measures that are well suited for dynamic imaging
studies.12

An alternative to time averaging and dynamic
measures is to collect data on a time scale that is fast
compared with the underlying variability of target con-
trast, a so-called snapshot. While technically achievable,
the obvious difficulty with this lies in the expected vari-
ance of any measure. We mention this because in addi-
tion to the influence of vascular rhythms, a well-known
feature of the vascular response is its considerable sensi-
tivity to autonomic stimuli. This can take on many
forms. A cool breeze, a sudden startle, pain, embarrass-
ment, loud noise, and related stimuli are all known to pro-
duce an abrupt autonomic response leading in many in-
stances to global vasoconstriction of superficial vessels,
especially those in the skin, with concomitant deep-vessel
vasodilation. We have confirmed the sensitivity of our
measuring technology to such provocations (specifically, a
cold shock) and have observed large local amplitude
variations (;300%) in tissue blood volume in the forearm
within ,2 s of onset of stimuli. Because such reactions
frequently occur or are easily induced, it would seem ap-
propriate that close attention be paid to the environmen-
tal conditions under which optical measurements are
made. Certainly this is a common practice in clinical
EEG studies. Absent this, it is hard to imagine how re-
peatable results could be obtained, particularly in the
case of discrete measures. Taken together, we believe
that the considerations outlined above render it likely
that dynamic measures will provide the highest quality
information.

D. Some Further Considerations

1. Computational limits
An obvious concern regarding the suitability of dynamic
measures is the computational burden it may entail. In-
deed, while the time required for computing a series of
images scales linearly with the number of images, it is not
always necessary to first compute the image series in or-
der to extract dynamic features. Instead, specific fea-
tures can be derived first from the time-varying detector
data and images of these parameters subsequently com-
puted directly. An example of an operation that is com-
mutative with the imaging operator is the DFT. In fact,
a range of linear operations can be similarly applied. An-
other of interest is the identification of the principal com-
ponents of a time series,69 a technique which has been ap-
plied, for example, by Mayhew et al. to evaluate time-
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varying surface reflectance measures of rat brain
following a specific challenge.70 In an imaging modality,
such measures can directly provide spatial maps that re-
veal the evolution of specific features over time, a capabil-
ity likely to have considerable utility in the detection of
focal disturbances in vascular states.

The ability to extract desired features directly from the
detector data, however, requires commutativity of the im-
aging and time-series analysis operators. Of the specific
operations considered in this report, those that involve
comparisons between time series in different pixels do not
satisfy this condition. Thus the DFT maps presented in
Figs. 7 and 8 could also have been produced (as confirmed
in results not shown) by reconstructing the 0.06- and
0.52-Hz components, respectively, of the DFTs of the de-
tector readings, while the CSD and coherence maps
shown in Figs. 9 and 10 could not have been. However,
as indicated by Eqs. (5) and (6), indirect estimates of
these quantities at a given frequency can be derived from
a reconstructed DFT component.33 While in practice, as
described above in Subsection 2.C, this would entail di-
viding the detector data time series in some number
nd . 1 of ‘‘records’’ and performing a separate DFT com-
putation and reconstruction based on the data in each
one, the total computational burden could still be sub-
stantially less than that associated with reconstructing a
complete time series of images. No such savings is pos-
sible for the cross-correlation function, however, which
can be obtained by computing a finite inverse Fourier
transform of a CSD, but only if estimates of the latter are
available over the entire range of frequencies for which it
is defined (see Subsection 2.C).33

2. Stability of Derived Measures
Although not directly examined here, an issue of practical
concern having an impact on the suitability of dynamic
measures is the stability of derived information, given the
range of uncertainties associated with both data collec-
tion and data analysis. Unlike many well-established
physiological measurement techniques, information re-
garding target features obtained by reconstruction meth-
ods is obtained indirectly. One consequence of this is
that, depending on the numerical methods used and the
type of information evaluated, the stability of recon-
structed images to simplifying assumptions can vary con-
siderably. For instance, we have recently explored the
sensitivity of reconstructed images of absolute coefficient
values, images of relative changes in these compared to
some defined state, and spatial maps of dynamic features
derived from the latter, to the influence of inaccuracies in
the initial guess within the framework of a first-order so-
lution using linear perturbation theory (i.e., methods em-
ployed here).28 These studies have shown that the accu-
racy of derived measures in the presence of such errors
varies according to the following inequality: absolute
measures ! relative measures , dynamic measures. In
these and other studies,13–16 we have found that maps re-
vealing dynamic features can be computed with remark-
able accuracy even if the quality of the image time series
from which these measures were derived has significantly
poorer quality. This finding coincides well with the dem-
onstration made here that features present in the
optical coefficient or hemodynamic parameter images, but
obscured because of low spatial resolution, can be re-
vealed with considerable accuracy and high contrast from
examination of dynamic properties.

This marks an important distinction between varieties
of optical tomography in which detector readings are
highly scattered, and others in which the properties and
dimensions of the target media permit reconstruction by
methods based on the Radon transform. An instructive
example of the latter type of optical tomography is the im-
aging of jets of heated air that flow through a ring of
sources and detectors.71 Although the authors of Ref. 71
do not explicitly show any data obtained by performing
time-series analysis operations such as those we have em-
ployed, the capability of doing so clearly exists. However,
it is important to note that their method fundamentally is
a type of standard straight-line tomography. Only the
detector diametrically opposite a given source receives
light from that source. Consequently, the individual im-
ages in the time series contain high-quality information
in themselves, comparable to the quality of any additional
information that could be extracted through time-series
analysis operations. This stands in sharp contrast to the
results that have been presented here for diffuse optical
tomography, wherein the feature contrast and spatial
resolution of the derived dynamic features are, in many
instances, considerably improved compared to those of
the optical or hemodynamic parameter images from
which they were derived.

3. Other Numerical Considerations
A fact already known to many but worth emphasizing is
that considerable flexibility exists regarding the determi-
nation of specific features from a system, given time-
series data. In many situations it is possible not only to
identify the presence of specific features, but also to, in a
certain manner, emphasize their absence. An example of
what is meant by this can be seen in Fig. 12, which shows
an overlay of the DFT amplitudes of the time-

Fig. 12. Amplitude of the discrete DFTs of a representative de-
tector readings time series, for the model medium with (solid
curve, solid circles) and without (dashed curve, open circles) the
tumor. Strong peaks are present at the adipose frequency (0.12
Hz) and the parenchyma frequency (0.4 Hz) for both target me-
dia, while a peak at the tumor frequency (0.06 Hz) occurs only in
the tumor-bearing medium. Peaks also are seen at overtone
and mixing frequencies.
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varying detector values for a detector positioned opposite
the source and obtained from the MR-derived target
medium in the presence of and in the absence of the
tumor. To facilitate comparison, the detector readings
were high-pass filtered to remove their dc components,
and then normalized to unit sum-of-squares (i.e., unit
spectral energy). The contribution of the tumor to the
Fourier amplitude spectrum is explicitly pointed out in
the figure. It is seen that this component has a small
amplitude and, even worse, it lies inside a ‘‘tail’’ of the
much stronger adipose peak.72 Consequently, it could be
expected that detecting the tumor and accurately charac-
terizing its location and size would be difficult to accom-
plish if it had to be done directly on the basis of charac-
teristic signals arising from the tumor tissue. But in fact
there is no such necessity, for it is possible to derive fea-
ture maps that are very sensitive to the absence of the
higher-amplitude frequencies of the other two tissue
types at locations where the tumor has displaced them.
In fact, this phenomenon is responsible for the remark-
able contrast and spatial accuracy seen in the coherence
images shown in Fig. 10. These results were obtained at
0.54 Hz, which is (within the numerical limitations of the
calculation) the sum of the adipose and parenchyma fre-
quencies. This frequency is present outside the tumor
and absent within it.

5. CONCLUSION
Optical tomography, in its present form, produces images
having relatively low spatial resolution. Because image
artifacts can be expected, efforts to separate these from
true features could prove difficult, especially in the case of
tissue studies where the background optical properties
are mainly unknown and likely time-varying, owing to
vascular reactivity. As discussed, measures of certain
vascular rhythms, or related phenomena, may allow for
the independent validation of specific features. This can
serve not only as a qualitative check on the accuracy of
images and feature maps, but in addition the derived
temporal features themselves, whether naturally occur-
ring or induced, can reveal features of functional activity
having contrast and spatial resolution superior to that
found in any discrete-time image. Thus measures of op-
tical properties of tissue are useful not only for their in-
trinsic information content, but also as indicators of
changes and rates of change in perfusion. Analysis of
this information in an imaging modality holds promise for
opening new vistas in understanding integrated physi-
ological states, as well as providing new measures for di-
agnostic and monitoring purposes.
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