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Abstract.  An essential component for a practical noninvasive brain-computer 
interface (BCI) system is data recording technology that can access the infor-
mation-processing activity of the brain with high fidelity and throughput.  Func-
tional near-infrared spectroscopic (fNIRS) imaging is a methodology that 
shows promise in meeting this need, having a demonstrated sensitivity to both 
the slow hemodynamic response that follows neuroactivation and to the lower 
amplitude fast optical response that is considered a direct correlate of neuroac-
tivation.  In this report we summarize the technology integration strategy we 
have developed that permits detection of both signal types with a single measur-
ing platform, and present results that document the ability to detect these data 
types transcranially in response to two different visual paradigms.  Also empha-
sized is the effectiveness of different data analysis approaches that serve to iso-
late signals of interest.  The findings support the practical utility of NIRS-based 
imaging methods for development of BCI applications. 
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1 Introduction 

There are many examples where the detailing of the internal properties of otherwise 
opaque materials has significant value.  In the late nineteen eighties, SUNY investiga-
tors first recognized that even in the limit where the penetrating energy is diffusely 
scattered, useful images of the internal properties of these materials was nevertheless 
possible [1,2].  A principal application area considered at that time for this type of im-
aging was the use of near infrared (NIR) light to study the optical properties of tissue 
[3].  Documented was the ability to generate 3D tomographic images of diffusing me-
dia whose dimensions have clinical interest based on physical models of light trans-



port [4,5].  These preliminary findings have gone on to spur the development of a new 
investigative field known by the name of Diffuse Optical Tomography (DOT), or, al-
ternately, NIRS imaging. 

In the ensuing years, much effort has been directed to delineating the 
cost/performance trade-offs of different sensing strategies for data collection, tech-
niques applied to forming tomographic images of diffusely scattering media, and dif-
ferent methods for extracting useful information from these images. 

Advantages of NIRS studies include good tissue penetration, exceptional sensitiv-
ity to the hemoglobin (Hb) signal, and recovery of 3D images having a spatial resolu-
tion on the order of 1 cm.   Other favorable attributes include excellent temporal reso-
lution (msec-sec range), information about all Hb components, ease of use in different 
environments (including freely moving subjects), and low system cost. 

Practical imaging system development is essentially an optimization problem 
whose limits are defined by application needs and cost/performance constraints.   
Typical parameters include details of the sensor array, acquisition speed and sensitiv-
ity, system control and calibration, validating phantoms, and, increasingly, access to 
sophisticated computing environments that support reliable feature extraction.  Below 
we briefly outline system design strategies our group has implemented to meet these 
various needs, and follow this with results from experimental studies that document 
the capability of these designs to explore different elements of the response to neuro-
activation. 

1.1 Light Sensing Strategies.  Brain function in the adult can be usefully probed by 
NIRS imaging techniques to a maximum depth of approximately 3 cm.  Separation of 
superficial from deeply lying structures requires sampling of backreflected light using 
fiber-coupled sensors positioned both near and far from any source.  Because fast data 
collection is needed to capture dynamic phenomena (e.g., cerebral response to stim-
uli), our approach has been to employ dense sensor arrays that also have large a dy-
namic range of measurement.  Rapid scanning is achieved by using a fast optical 
switch that can be operated to support all or only one of the available illumination 
sites.   The latter arrangement allows for parallel sampling of the entire sensor array 
(currently up to 128 sensors) at speeds of 70-140 Hz, depending on type of signal 
handling circuitry.   Measurements are performed using frequency-encoding tech-
niques with homodyne detection in the audio-frequency range to allow for separate 
detection of light intensities from multiple illuminating wavelengths [6-8]. 

Tomography studies typically are conducted using a time-multiplexed, multi-site 
illumination approach wherein the full array is read for each illuminating site [1,3,4,6-
8]. Currently feasible are illumination/sensing approaches that support sampling from 
four arrays in parallel, each supporting a 32S × 32D array and up to six wavelengths 
(4,096 illumination-detection pairs per wavelength per image frame).  Such configu-
rations can allow for tomographic imaging of approximately half the surface area of 
the cranium.  Full head coverage can be achieved using more sparsely spaced sensor 
arrays.  This reduces the tomography capability to a surface mapping technique 
known in the scientific literature as Optical Topography [9,10].  By achieving spatial 
separation of light signals in three dimensions, the tomography method can be ex-
pected to yield findings with greater specificity. 



1.2 Sensor Head Design.  The presence of hair can be an important consideration in 
sensor head design.  Dark hair can be strongly attenuating and in such cases, to enable 
good fiber coupling to the scalp, careful displacement of hair is needed to achieve 
good signal quality.  We have implemented two different design solutions.  One em-
ploys open scaffolding that allows attachment of arcs that serve to mechanically sup-
port spring-loaded optical fibers.  The other is a head-shaped silicone membrane that 
supports placement of fibers within a nearly regular array.  In our experience the for-
mer is best suited for subjects with dense hair, the latter where the expected impact of 
hair is less important. 

1.3 Anatomical Mapping.  In many instances, an important object of study is to map 
information gained from the imaging studies to the underlying anatomy.  This re-
quires knowledge of individual head shape, of the position of the sensor array with re-
spect to this head shape, and specification of an appropriate atlas.  Currently a variety 
of surface-rendering tools are commercially available that have modest complexity 
and cost.  Using methods originally developed to map EEG findings [11], we have 
adopted these tools to allow for mapping of NIRS image findings. 

The usual case for NIRS imaging, wherein mapping of tomographic findings to an 
atlas is desired, is more complex than is typical of EEG.  A key component is the need 
for library files that support computation of tomographic images based on a wide 
range of possible sensor configurations.  Our approach has been to introduce a GUI 
that allows for easy specification of selected array configurations.  The considered 
files are themselves based on tessellations of a segmented 3D MRI map of an adult 
head.  Fiducial measures, along with use of affine interpolation methods, allow for 
accurate mapping of the sensor array to this selected atlas.  Mapping to other atlases, 
including the individual’s MRI map, is also available. 

1.4 Data Analysis.  Many approaches used for analysis of NIRS data for neuroimag-
ing studies are analogues of methods developed for fMRI.  Useful endpoints fall into 
three classes: studies on resting states, localization of activated regions, and identifi-
cation of regions that are functionally connected.  Because of the strong dependence 
of signal quality on optode separation, the quality of data across the sensor array can 
vary greatly.  This presents the need for preprocessing schemes wherein channels hav-
ing poor signal quality can be excluded from subsequent analysis [7,8]. 

Preprocessing is followed by use of efficient 3D image reconstruction methods that 
are insensitive to the usual uncertainties of experiments [12-14].   While computation-
ally efficient, these methods tend to produce images whose accuracy and resolution 
can be improved using more computationally intensive techniques.   The latter meth-
ods, however, have severe practical limitations when applied to image time-series 
studies.  To this end, we have implemented alternative image correction methods that 
have good performance and efficiency [15-20]. 

1.4.1 Signal Separation Methods.  Many measures from intact systems constitute a 
complex mixture of information over space and time.  In the case of NIRS, informa-
tion is convolved spatially, on a macroscopic scale, because of scattering, and tempo-
rally because of coincident phenomenology affecting different elements of the vascu-
lar tree.  Compared to topographic imaging methods, image reconstruction using 
model-based techniques provides an objective basis for effectively reducing the 
blurred paths of light in tissue caused by scattering [1-5,12-20]. 



Among the temporal decomposition methods are techniques that can provide for 
isolation of signals that are uncorrelated and independent [21,22].  These methods 
have found favor in the functional neuroimaging community because many of the ap-
plied stimulus paradigms produce responses that largely meet these criteria.  Never-
theless, because biological systems tend to operate in ways less favorable to simplify-
ing mathematics, in many instances strict interpretation of the deconvolved time 
series can prove difficult.  Regardless, when applied with care, these methods can 
prove useful and, as shown later, we have adopted one class of ICA methods to isolate 
the fast optical signal. 

1.4.2 Separation of Correlated Hemodynamic Signals. A specific data analysis 
strategy that we have applied to NIRS neuroimaging studies follows from the consid-
eration that while there can be a time lag between an O2 demand-linked “cause” and 
the subsequent blood-delivery “effect,” still it is reasonable to associate different 
combinations of Hb levels with different conditions of balance or imbalance between 
the utilization and supply of O2.  For example, if Hbdeoxy is elevated and at the same 
instant Hboxy and Hbtotal levels are reduced (in all cases, compared to their time-
averaged levels in a resting baseline condition), we would interpret this as indicating 
that the tissue is in a state of net O2 demand that the vasculature has not (yet) re-
sponded to by increasing the inflow of oxygenated blood.  In like manner we derive 
the complete set of discrete combinatorial states defined in Table 1, each correspond-
ing to a different pattern of Hb-level deviations from their baseline values in accor-
dance with a neuroactivation induced supply-demand imbalance model.   

 
Table 1.  Definitions of discrete states used to characterize hemodynamic responses.  Plus 
sign (+) denotes an instantaneous Hb level greater than the temporal mean value; minus 
sign (-) denotes an instantaneous level less than the temporal mean value.  

 State 1 State 2 State 3 State 4 State 5 State 6 
Hboxy - - - + + + 
Hbdeoxy - + + + - - 
Hbtotal - - + + + - 
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1.5  Data Analysis Examples.  In the following sections we present illustrative ex-
amples of results that have been obtained by applying an ICA algorithm to one set of 
NIRS imaging data, and the combinatorial state analysis to another.  Common to both 
measurements was that a visual sensory input was used to stimulate neural activations 
with a prescribed time course.  The distinction that determines which analysis ap-
proach is the appropriate one is that in one case a single illumination site was used 
(~75 Hz framing rate), and time-multiplexed, multi-site illumination (~2 Hz) was 



used in the other.  For the first data set, ICA was used to identify the event-related fast 
optical signal, since it was expected that this signal would be independent of other 
sources of spatiotemporal variance in the data.  The combinatorial-state decomposi-
tion was applied to the slow hemodynamic response data collected in the second ex-
periment, where independence among the Hb components was not expected. 

2 Methods 

2.1 Data Collection 

For both experiments, a multi-channel continuous wave near-infrared optical tomo-
graphy imager (www.nirx.net) was used to measure, at multiple positions on each par-
ticipant’s scalp, the intensity of backreflected NIR light at 760 nm and 830 nm wave-
lengths.    The optodes were positioned to make contact with the scalp, with ~1-cm 
inter-optode spacing, using an adjustable helmet with an open scaffolding design [23]. 

For the fast optical-response measurement, a 15-optode (3×5) array was positioned 
on the left side of the forehead.  The tissue was illuminated through one of the most 
laterally positioned optodes, and sets of intensity measurements were collected at a 
~75-Hz scan rate.  For the slow hemodynamic-response measurement, measurements 
were performed using 30 optodes, in a 3×10 array positioned symmetrically about the 
midline of the occipital cortex.  With each optode serving as both a source and a de-
tector, a complete scan of the array required approximately 0.5 s. 

The fast optical-response study (10 right-handed participants [6 female], 18-36 
years old, mean age 26.6 yr) employed a target detection task.  The visual information 
presented to the subjects consisted of a sequence of landscape scenes, most containing 
no artificial objects, while a small percentage, randomly placed within the sequence, 
included man-made transportation vehicles.  The image presentation rate (PR) was ei-
ther 4 Hz or 6 Hz, with data collected from each subject at both rates .  The slow 
hemodynamic-response study (9 right-handed participants [2 female], 22-36 years 
old, mean age 27.6 yr) used a reversing-checkerboard (8 Hz) visual stimulus to induce 
an increase in neural activity in the visual cortex.  The stimulus was presented for 2 s 
at a time, a total of 120 times, with a randomly varying time interval between presen-
tations. 

2.2 Data Analysis 

For the fast optical-response experiment, data corresponding to each of the four wave-
length-PR combinations were processed separately.  For each combination, the  data 
were frequency-filtered with a 2-30 Hz passband.  Independent components were 
computed from each set of filtered data [24].  Any independent component (IC) that 
was significantly contaminated with cardiac-rhythm power, or was heavily weighted 
toward the superficial tissue layers, was deleted, and the remaining ICs were re-
summed to produce a set of artifact-cleansed time series.  Block-average responses 
were computed for each subject’s responses to images that did and did not contain 
man-made objects (T [i.e., target] and NT [i.e., non-target], respectively).  Mann-
Whitney tests were performed to determine which channels and time frames showed 
statistically significant T responses, NT responses, or T-NT differences.  Within-

http://www.nirx.net/


subject averages were computed over all channels yielding statistical significance for 
at least two time frames, and t-tests were performed to determine which time frames 
had a group-average response significantly different from zero. 

In the slow hemodynamic-response case, 3D tomographic image time series Hboxy 
and Hbdeoxy were reconstructed, using the Near-infrared Analysis, Visualization and 
Imaging (NAVI) software package (www.nirx.net) [25].  The images were converted 
into ANALYZE format and exported to allow for additional processing using the 
AFNI image analysis suite (afni.nimh.nih.gov/afni/).  Using AFNI, Hbtotal was calcu-
lated by adding the Hboxy and Hbdeoxy time series.  Every image-pixel time series was 
normalized to its temporal mean to compensate for any large differences in blood 
flow between individuals.  The resulting scaled data were then analyzed as follows: 

Area under curve.  A deconvolution analysis was used to calculate an impulse re-
sponse function (IRF) for the visual stimulus.  The best-fitting gamma-variate func-
tion for this IRF was then determined using a nonlinear regression program [26].  This 
was used to calculate the event-related activation by expressing the area under the 
curve (AuC).  To compare the AuC across participants, a t-test was performed, using 
a corrected voxel-level probability threshold of 0.05 (p < 0.01 individual voxel prob-
ability; 54-voxel cluster size).  This provided a statistical test of the goodness of fit 
between the experimental manipulation and changes in Hboxy, Hbdeoxy and Hbtotal, us-
ing standard techniques developed for the analysis of fMRI data.  The correction for 
multiple comparisons was achieved by imposing a cluster-level threshold in addition 
to the voxel-level probability threshold.  The cluster-level threshold, found using 
Monte Carlo simulations [27], was 54 contiguous voxels. 

Time-fraction measures.  For each voxel, the corresponding IRF was used to compute 
the fraction of time spent in each of the 6 combinatorial states (Table 1) over the 25 s 
following stimulus presentation.  This resulted in a volume of the same dimensions as 
the reconstructed image, in which each voxel contains a number between 0 and 1 rep-
resenting the fraction of time spent in one of the six states during the 25-s interval.  
Thus 6 volumes, one for each state, were computed for each participant.  The statisti-
cal significance of the resulting time fractions was determined with t-tests comparing 
the observed time to a null hypothesis that was empirically determined by applying 
the same time-fraction analysis to images from each subject’s baseline time interval. 

3 Results 

3.1 Measurement of Fast Optical Signal 

The group-average differential T-minus-NT time course, derived from artifact-free 
ICs for the 830-nm, 6-Hz PR data, is plotted in Figure 1.  Also included is a sketch of 
the measurement geometry, indicating the dimensions and coverage area of the detec-
tor array and the location of the illumination optode.  Presentation of the stimulus be-
gins at time 0 (vertical dashed line), and time frames for which the group-mean T/NT 
difference is statistically significant are marked with asterisks.  The time delay be-
tween stimulus presentation and significant response is comparable to that typically 
found in electrical measurements of visual ERPs. 

http://www.nirx.net/
http://afni.nimh.nih.gov/afni/
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Fig. 1. Panel A: Normalized group-mean differential responses (target minus non-target) 
for the 830-nm, 6-Hz PR data.  Dotted lines show standard errors for the corresponding 
signals at each time point; asterisks designate time bins with significant difference be-
tween targets and non-targets (t-test, p < 0.05).  Panel B: geometry and location of the 
15-optode array, with illumination site indicated. 

3.2 Measurement of Slow Hemodynamic Response 

Figure 2 shows two orthogonal sections through the center-of-mass of the region of 
activation, in response to the visual stimulus, identified by the group analysis of the 
participants’ Hboxy AuC results.   While many of the identified voxels are localized to 
the visual cortex, regions of activation outside of this location also were seen.  The as-
sociated temporal response function (not shown) is triphasic, and its shape coincides 
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Fig. 2. Orthogonal sections through the center-of-mass of the region of activation identi-
fied by the group analysis of the participants’ Hboxy AuC results. 

well with the impulse response function seen in BOLD studies.  Both the spatial- and 
temporal-domain results for Hbdeoxy and Hbtotal are similar to those for Hboxy, while the 
size of the region identified as active is somewhat different in each case. 

The time-fraction for each of the six combinatorial states was analyzed with a t-test 
across subjects that examined the difference between the fraction of time spent in 



each state during the 25-s stimulation-response periods and during the baseline time 
interval.  The same correction for multiple comparisons was performed here as was 
used in the AuC analyses.  The results, as shown in Figure 3, were that only State 1 
and State 4 were identified as undergoing significant event-related responses across 
all nine subjects.  Fig. 3 shows that the spatial extent of the time-fractions associated 
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Fig. 3. Horizontal sections through the center-of-mass of the region of activation identi-
fied by the group analysis of the State 1 (Panel A) and State 4 (Panel B) time fractions. 

with States 1 and 4 both are substantially smaller than those identified in the AuC 
analysis of any one Hb component.  It is also seen that the State-1 and State-4 regions 
are centered in different locations, in both the Y (front-back) and Z dimensions.  
These results demonstrate that finer spatial resolution is achievable using analysis 
strategies that simultaneously consider multiple Hb components, and that differential 
information is associated with different combinatorial states. 

4 Discussion 

A research-and-development effort on functional NIRS imaging, under way since the 
late 1980s, seeks to identify and address all requirements for the sensing-technology 
associated with brain-computer interface systems.  These include the ability to: 1) as-
sess the location and magnitude of neural activity, either directly or through a surro-
gate parameter; 2) distinguish among different aspects of cerebral data processing 
(e.g., sensory vs. cognitive); 3) examine tissue dynamics over a wide range of time 
scales/resolutions, with maximal freedom to specify the area being examined; 4) ex-
tract actionable, accurate information from a measurement, within a usefully brief 
time interval.  For practicality, it also is necessary that the technology be as “transpar-
ent” as possible to the participants in a BCI application, and that it have a number of 
other qualities that can be classified as the “convenience” factor: ease of use, portabil-
ity, ruggedness, successful performance in significantly non-ideal conditions, and low 
cost. 

The bulk of our efforts for many years went into satisfying requirements 3 and 4 
above, and into clearing the transparency and convenience hurdles, and this is sum-



marized in the Introduction.  At the point that these criteria had been met, then it was 
appropriate to put serious effort into exploring requirements 1 and 2.  The illustrative 
results presented here are an indication of our ability to isolate expected features of 
interest, strongly correlated with neural activity, from the NIRS signals generated by 
our technology.  It is noteworthy that these encompassed measurements over two dis-
tinct cortical regions, and with very different temporal resolutions, source conditions, 
and data analysis strategies, but were accomplished with a single measuring platform. 
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