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Living tissue scatters near-
infrared light randomly.
Can this problem be
overcome to make NIR
optical tomography
possible? If so, it could be
more accurate and less
damaging than other
medical imaging
techniques. Computational
experiments using
combined MRI-optical
methods show promise.
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Many people, perhaps as children, have seen the red glow produced by
placing a flashlight to the palm of a hand or inside the mouth. This
simple experiment teaches us that red light can penetrate through relatively
thick tissues. At near-infrared (NIR) wavelengths (about 700 to 1,300 nm),
even greater penetration is possible. As far back as 1929, investigators rec-
ognized the potential of employing NIR optical measurements for the study
of tissues.!

" Since that time computers, combined with advances in the mathematics
and algorithmics of inverse problems, have made it possible to use various
frequencies of electromagnetic (and other) energy for much more sophisti-
cated methods of medical imaging. For example, X rays are now routinely
used not only to create the commonly recognized two-dimensional images
on film, but to produce cross-sectional digital images of the body that can be
built up into a true 3D composite. This technique, known as tomography (or
computed tomography, whence CT scan) creates an image by computational
analysis of multiple measurements made from different directions sur-
rounding an object. Of special interest would be to somehow use optical
measurements in a similar manner.

There are many potential benefits to doing this. Unlike X rays, NIR pho-
tons do not cause tissue damage. Measurements can be performed with great
sensitivity and, in many cases, can employ relatively low-cost, compact in-
strumentation. The obvious difficulty is that despite significant penetration
at these wavelengths, tissues appear opaque because of the intense scattering
experienced by the migrating photons. Until quite recently, many would
have argued (and some still do) that this spells certain doom for any hope
of recovering usable images.

At the heart of the matter is whether it is possible to produce an image of
the interior of a random-scattering medium. Conventional wisdom would
argue that if there is no well-defined path for the signal propagating from a
source to a detector, there is no possibility of recovering an image.” This po-
sition is not without intuitive merit: the mythological Theseus was able to
find his way out of the Labyrinth by following a piece of string he’d laid down
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while entering it, but it is easy to see that the
“strings” corresponding to individual NIR photon
trajectories in thick tssue structures are thor-
oughly tied in knots. Why should it be possible to
disentangle this mass of threads? In this article we
describe strategies we are pursuing to do this, and
some recent findings. We hope they will convince
even the most hardened skeptic that this problem
is mot hopeless. On the contrary, there is reason for
optimism that practical systems can be developed.

Any problem worth studying
must have some basic irresistible
features. Ours has two. First, we
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etrating or emitted energy se-
verely limits the achievable reso-
lution in many types of imaging
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formation from scattering mea-
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surements could greatly extend
the depth or thickness of media
that could be explored and the
types of energy sources that
could be employed. Many fields
have imaging problems that are
made more difficult by scatter-
ing—geophysics, materials test-
ing, surveillance, and medicine,
for instance—and image en-
hancement strategies applicable
to any one of these could prove
useful to all. This has caught the
attention of many researchers.
The second reason we find the
problem irresisdble is the
breadth of potendal applications
to clinical medicine. Several
physiologically important pigments can easily be
studied at NIR wavelengths; in particular, hemo-
globin. Measurement of the oxygen-dependent
spectral changes of hemoglobin, which are closely
linked to tssue function, has significant practical
value, especially for detecting serious medical prob-
lems such as strokes or hemorrhages. Optical
methods also are well suited for the study of dy-
namic events. Such measurements could be of par-
ticular value in the monitoring of brain function.
From electromagnetic theory, we learn that so-
lutions to the inverse scattering problem (see side-
bar) can be obtained from formulations derived
from Mazwell’s equations. This approach is the
foundation for diffraction tomography, which has
been successfully applied to acoustic and mi-
crowave imaging. While formulations based on
electromagnetic theory can be applied to the opti-
cal tomography problem, the much more intense
scattering of photons in tissue quickly renders any

serious examination of such data intractable. An
alternative formulation, also capable of account-
ing for the effects of scattering, is transport theory,
which treats propagating photons as particles. This
is a valid simplification if the phases of the various
contributions to the net scattered field are uncor-
related, a condition satisfied in almost all cases of
thick tissues illuminated by NIR light. The chief
advantage of the transport theory approach is that
it brings relative computational simplicity to a
complex physical phenomenon.

Several years ago, some of us*»* described an
image-recovery scheme derived from transport
theory that is suitable for examining the interior
properties of opaque, dense scattering media. In-
dependently, others™® have described alternative
schemes formulated upon random-walk and dif-
fusion theories. Our approaches and those of Ar-
ridge et al. consider a tomographic-type mea-
surement scheme, similar to that commonly
employed in other imaging modalities, and entail
solving a system of linear equations that computes
the difference in optical coefficients between the
unknown medium and a defined reference
medium. In physics, this is commonly referred to
as solving a linear perturbation problem.

The principal difference between this method
and, for example, X-ray computed tomography,
is that we use imaging operators that explicitly
take into account the effects of multiple scatter-
ing. The physical interpretation of these opera-
tors is that each one represents the spatial proba-
bility distribution of photons launched from a
source that enter a specified detector. A map of
this distribution is similar to a cloud. It has fuzzy
borders, with some regions more dense than oth-
ers. The regions of greatest importance usually
lie near the source and detector. Factors that de-
termine the shape of this distribution are defined
by parameters that specify the forward problem.
These include the optical coefficients of the
medium, that is, the absorption and scattering
cross sections; the medium’s shape; and proper-
ties of the source and detector, in particular the
temporal resolution of measurement.

]mprovemenfs in data collection
and analysis: Development of
modeling strategies

Much of the ongoing effort in this field is directed
toward developing improved algorithms and ap-
propriate data collecion schemes. The latter refers
to refinement of the physical measurement (num-
ber of optical sources and detectors, view angle,
etc.) and whether other types of data may be re-
quired to compute an optical image. Such efforts
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invariably require the weighing of trade-offs be-
tween practical measurements and a tractable com-
putation. One of our goals has been to devise a pro-
cedure incorporating anatomically accurate models
of tissues that is well suited to systematically ex-
ploring these trade-offs. In particular, we are using
magnetic resonance—derived data because of its
high resolution and excellent contrast of soft tis-
sues, and because 3D anatomical information can
be easily obtained. We do so both for the purpose
of method refinement and to explore the feasibility
of acquiring optical measurements simultaneously
with MRI. In this context, the phrase “MRI-guided
optical tomography” has a dual meaning. Further,
we adopt the modeling of anatomically accurate
media because of the expected sensitivity of the
trade-offs to the structure of the media.

Use of imaging data from one modality to aid in
the development and application of another is be-
coming increasingly popular, in part due to im-
proved methods for image segmentation and reg-
istration. The MR method as a means of acquiring
a priori anatomical information has added signifi-
cance for optical tomography because of the ap-
parent practicality of acquiring simultaneous opti-
cal and MR measurements. In practice, this would
require use of optical fibers to deliver light to the
tissue and to transmit emitted light to detectors
positioned at a sufficient distance from the mag-
net so as not to be affected by the magnetic field.
While the breadth of MR applications continues
to grow, the merits of a combined MR-optical
measurement are undiminished. Optical methods
are orders of magnitude more sensitive than MRI,
especially when fluorescence measurements are
made, and are sensitive to different physical para-
meters. Thus, it would appear that there are strong
elements of synergism associated with combining
MR and optical tomographic methods.

In the following, we present a brief description
of the perturbation model and some details of nu-
merical experiments we have conducted using
MR-derived data sets. We believe that this model-
ing scheme is an efficient and cost-effective means
to systematically explore the merits of various
strategies for collecting optical data to use with a
variety of algorithms. We have numerically simu-
lated a range of optical tomographic measure-
ments to explore how best to acquire and analyze
data. Specifically, we simulated detector readings
for a variety of source—detector pairs for a breast
with and without assumed defined inclusions. The
calculations of light diffusion were simulated. The
optical data for the “medium,” the breast, were ob-
tained by assigning an assumed set of optical co-
efficients for each type of breast tissue as deter-
mined by segmentation of an actual MR image of
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the breast. The model was highly simplified and
is discussed in detail below.

Important factors we explored include the
geometry of the illumination scheme, the source
condition, the number and location of sources and
detectors, and the influence of systematic and ran-
dom errors that degrade image quality. Our basic
method involves computing solutions to the for-
ward problem for segmented 3D MR data sets in
which the identified tissue types have been as-
signed optical coefficients. In this manner we can
easily simulate a tomographic measurement us-
ing a model that is anatomically accurate, and for
which we can vary the contrast, size, and number
of simulated pathologies in relation to a range of
properties of the background tissue. For any par-
ticular tomographic data set we can also explore
the dependence of image quality on issues related
to the implementation of an algorithm, such as
use of range constraints, regularization methods,
and the effects of ill-conditioning and ill-posed-
ness. Thus, our approach is well suited for opti-
mizing data collection and data analysis schemes
while at the same time providing insight into the
utility of acquiring simultaneous MR and optical
data inside an MR magnet.

Formulation of the imaging problem
The governing equation describing the migration
of photons that experience elastic scattering, un-
der the assumption that it is appropriate to treat
photons as Newtonian particles, is the one-speed
radiation transport equation. This is an integro-
differential balance equation each of whose terms
accounts for one of the physical processes that in-
fluence the angular intensity distribution within
a specified medium. In the limit of weak absorp-
tion, weakly anisotropic scattering, and coeffi-
cients that vary only slowly in the spatial domain,
solutions to the diffusion equation are excellent
approximations to those of the transport equation.
The continuous diffusion equation with inhomo-
geneous diffusion constant D(r) is

ci ;% @(r,t) - V- [D(r)V(r,2)]
+1,(r) ®(r,2) = S(r,2) )

where @(r, £) [measured in cm™ s71] is the diffuse
intensity at position r and time ¢, S(r, #) [em™ s7!]
is the source strength at position r and time ¢,
1,(0) [cn™"] is the position-dependent absorption
coefficient, D(r) [cm] is the position-dependent
diffusion coefficient, and ¢, is the speed of light in
the medium. D(r) is related to the absorption and
scattering coefficients by
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where 1,(r) [cm™] is the position-dependent scat-
tering coefficient and g [dimensionless] is the scat-
tering anisotropy parameter, equal to the average
value of the cosine of the angle through which
photons are scattered. For the product u(r)(1 — g
we will use the notation (r) [em™], which is
known as the reduced scattering coefficient.

An important experimental control parameter
is the time-dependence of S(r, £). Three source
types have received particular attention. One set
of investigators favors illuminating a target with
trains of very brief pulses of light (Az < 1 picosec-
ond is readily achievable in practice) and measur-
ing time-resolved detector responses. Another ap-
proach uses time-harmonic sources, in which the
illumination is continuous but with an intensity
that varies (at a rate of around 100 MHz to 1 GHz)
about the mean level. The measured quantities at
the detector in this case are the mean intensity or
flux, the amplitude of its variation, and the phase of
the detected light relative to the incident light.
The impulse-response and time-harmonic ap-
proaches are a Fourier pair, so in theory the same
information regarding the structure of a target
medium is obtainable either way, and the choice
usually hinges on practical consideratons such as
the comparative difficulties and costs of making
and/or analyzing the measurements. The third ap-
proach is illumination of the medium with tdme-
independent sources and measurement of the in-
tensity or flux. This is the method we have used
here. It has clear practical advantages in terms of
simplifying the experimental or clinical collection
of data, but the information content of the detec-
tor readings may be intrinsically lower. Note that
the continuous-wave approach is a limiting case of
both the time-resolved (long pulse duration limit)
and time-harmonic (low frequency limit) domains.

D(r) =

Perturbation model

We have previously described a linear perturba-
tion model, based on the transport equation, for
imaging differences in the optical coefficients for
an arbitrary medium.>*” The results described

" here use the diffusion equation to compute detec-

tor responses and the intensity of light in the in-
terior of the target and reference media. Thus, the
quantities that may be imaged are the perturba-
tions of the absorption and diffusion coefficients,

Ap(r) and AD(r), of the target relative to the ref-
erence. Here we sketch the derivation of the ap-
propriate continuous-wave perturbation model
for diffusion.

The time-independent diffusion equation for
the reference medium is

Sr)+V- [D(r)V@(r)] — i, (r)o(r)=0 @)

Assume that the position-dependent diffusion and
absorption coefficients in the zarger medium are
small perturbations to those in the reference
medium. Then the light intensity distribution in
the target is likewise equal to the reference inten-
sity plus a perturbation:

S(r) +V- {[D(r) + AD(r)] \% [@(r) + A@(r)]}
- [/ud(r) + AL, (r)] [@(r) + A@(r)] =0 (3)

When we multiply out all terms in Equation 3 and
then subtract Equation 2 from it, we are left with

V- { D)V ac(r)] + AD(r)Ve(r) + AD(x)V[ ad(r)]}
— 11, (£)AD(r) — A, (r)®(r) ~ Apt, (r)Ad(r) =0
)

Our basic linearity assumption, which is valid for
sufficiently small Ap,(r) and AD(x), is that the sec-
ond-order perturbation terms in Equation 4 can
be neglected, so that

0= V-{D(x)V[a®(r)[} - 1, (r)a(r)

+{V [ AD(x)Vo(r)) - A, (r)o(x)
= V{D(r)V[a(x)]} - 1, (r)ad(x) + S°(x)  (5)

Thus, the light intensity perturbation obeys a
diffusion equation, in which the absorption and
diffusion coefficient distributions are those of the
reference medium. The problem of image recon-
struction is mathematically equivalent to that of
solving for the unknown source function S'(r).

In the linear regime, the general expression for
the difference in detector response, AR, between
the target and reference media is

AR = J A/.La( )+wD(r)AD(r)] Ir (6)

where w,(r) and wp(r) are the appropriate weight
Junctions for the absorption and diffusion coeffi-
cients at r. Here,

w,(r) ==@(r)®*(r), wp(r)=-VO(r) VO*(r)
%]
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where @*(r) denotes the adjoint intensity, which is
defined as the detector response due to one pho-
ton born per second at r and emitted isotropically.
It has a well-known alternate interpretation as the
intensity at r due to one photon per second in-
jected into the medium from the detector. Thus,
the same methods used for computation of &(r)
can also be used to compute ®*(r).

The absorption weight function is readily in-
terpreted. The factor Au,(r)®(r) is the excess
absorption rate in the linear approximation
per unit volume at r due to Au,(r). Thus
—Ap(OD@)D(r)Lr is the decrease in the inten-
sity at the detector due to the extra absorptions in
&r. The expression for wp(r) is not as easily in-
terpreted physically.

Let the target medium be discretized into 7
nonoverlapping voxels and let Ay,; be the vol-
ume-averaged perturbation of the absorption co-
efficient in voxel j. Extension to changes in the
diffusion coefficient is immediate. Let I be the to-
tal number of source—detector pairs and AR; be
the detector reading for the jith source-detector
pair. Then Equation 6 can be recast as a system
of linear equations

AR =WAp., ' (8)
where
AR, wy Wi e Wiy
AR = | AR | gy o [P0 R g g
AR wy Wy - Vg |
Ay,
aw, = | e |
Aty 7

Here, the matrix elements wy; are the discrete
analogs of the continuous weight function in
Equation 7.

The inverse problem can also be stated as fol-
lows: given a set of source—detector pairs, the per-
turbed detector readings AR, and the precalculated
weight function W, find the perturbation of the
absorption coefficients A, of the target medium.

Setting up the reference medium
from MR data

The basic approach we use is to perform a series
of MR measurements on the breast of a volunteer,
segment the resulting images according to tissue
type, assign estimates of the optical coefficients to
the background tissues, and introduce “virtual tu-

WINTER 1995

Fat

(a)

Figure 1. Reference medium: (a) MR-derived sagit-
tal slice of a female breast, (b) the same image af-
ter segmenting by tissue type.

mors” to selected areas. The resulting data set be-
comes the starting point for the computation of
optical tomographic data.

Specifically, in the studies conducted here a se-
ries of 24 MR images were obtained from the
breast of a volunteer using a GE Signa MR system.
The fast spin echo (TR = 4000 ms, TE = 112 ms,
3-mm thickness) technique was used, with and
without fat and water saturation. Surface coils
were used, to obtain better uniformity of the field.
Image data were collected with the subject lying
prone in the magnet, which caused some degree
of dorsal-ventral compression of the breast. Fig-
ure la shows a sagittal section through one such
image. This series of sagittal sections was then
used as the reference medium in image recon-
structions. Prior to evaluating the MR data for
computation of photon intensities, spatial averag-
ing was performed to yield a 3D image of dimen-
sion 49 x 35 x 24 voxels.

Each pixel in the digitized MR image had an as-
signed integer intensity value in the range 1-256.
The breast was segmented into two different tis-
sue types—fat and glandular (parenchyma). The
segmentation was done by a simple thresholding
technique; all MR image pixels with image inten-
sities < 128 were assumed to be fat and all those
> 128 were assumed to be parenchyma. We are
aware of more accurate segmentation protocols
and have adopted these in other studies.® Figure
1b shows a sagittal section of a segmented image.
Each tissue type was then assigned a set of opti-
cal properties—, and y;, the absorption and re-
duced scattering coefficients. Two “pathologies”
were introduced by assigning different p, and/or 1]
values to selected voxels in two regions. Figure 2a
is a schematic of this. The values in Table 1 identify
the range of optical properties assigned to simu-
late seven different types of tissue backgrounds
and added tumors. In all cases except medium IV,
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Figure 2. Schematic front (coronal) view of breast showing positions of (a) numbered slices and added
“pathologies” (small squares); (b) 20 eptical sources; (c) 20 detectors for source S1.

Table 1. Optical coefficients assigned to segmented MR images (in mm™).

Haq

Ha b

Typé

[
I
1
v
Vv
Vi

VH .

0.003
0.006
0.012
0.012

1 0.0

0.01

0.01

001 . 030
002 0.60
0.04 0.60
1 0.04.° . 0.60

0,03 050

0,03 1.00
0.03. . - 2.00
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the optical coefficients for the “added tumors” ex-
ceeded those of the background medium. Taken
together, the values chosen cover a range that ex-
ceeds the expected values in real tissues at both
the high and low ends.

Although in most cases the scattering and ab-
sorption coefficients of the pathologies were both
perturbed, images were reconstructed according
to a model that assumes perturbations only in the
absorption coefficients. We use this simplification
for three reasons. First, it reduces the computa-
tional effort. Second, by reducing the number of
unknowns, it should help stabilize computed so-
Iutions. Third, and most important, the scatter-
ing weight function is generally much smaller
than the absorption weight function.

Numerical simulation of optical
tomography data

‘We have evaluated tomographic data sets com-

puted from the seven different background-
medium types. Use of a perturbation model re-
quires specification of some type of reference

medium. The reference media used here were
breast maps lacking the added inclusions. We ob-
tained solutions to Equation 2 using a Jacobi re-
laxation code. The limitations encountered were
mostly due to the computational inefficiency of
the Jacobi method. Typical computing times for
a single source location were as long as 24 hours:
on a workstation. As we need 40 such computa-
tions (20 reference, 20 test medium) per breast
map, the overall computing effort is significant.
The effort remained tractable thanks to the avail-
ability of multiple workstations at the CASE Cen-
ter at Syracuse University.

The grid size used for a particular computation
varied with the type of optical parameters chosen.
In general, we tried to choose grid sizes smaller
than the largest value for £/ ™. In some cases, due
to computational limitations, this was not practi-
cal and larger grid sizes were adopted. We are
aware that this may lead to some inaccuracies in
the computed results, but for the purposes of
these computations, such errors should not affect
the validity of the reconstruction results. Because
different grid sizes were used in the forward prob-
lem, the corresponding volume of the breast con-
sidered also varied. In effect, we have evaluated a
series of breasts that have identical anatomy but
are scaled to different sizes. Table 2 shows the spe-
cific parameters used to compute solutions to the
forward problem for each of the breast types ex-
amined. For comparison, results obtained from
forward problems having a dimension of 98 x 70 x
48 voxels were then spatially averaged to a grid
size 0f 49 X 35 x 24 before attempting image re-
covery. The tumor size was also scaled; it mea-
sured 6 X 6 X 6 for a large breastand 3 x 3 x 3 for
the small.

Any practical system will need more efficient
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and flexible numerical solvers than the Jacobi
method used here. Two that come to mind are
multigrid finite-difference solvers’ and the finite-
element method.!® Multigrid solvers can greatly
increase the speed of convergence over the point
Jacobi method we used, but appear to be more
cumbersome to implement for media having ar-
bitrary geometries. For this the finite-element
method is more appropriate. In either case, com-
puting physically accurate solutions will require
careful selection of boundary conditions.!! It also
deserves mention that the appropriateness of ap-
plying formulations derived from diffusion the-
ory to evaluation of data from real tissues remains
an open question. The concern is whether this ap-
proach is sufficiently robust to permit accurate
modeling of the range of conditions expected in
clinical practice. Should it not be adequate, then
more computationally intensive solutions to the
transport equation might be required.

A schematic of the tomographic measurement
scheme used to simulate data collection is shown
in Figures 2b and 2c. In the model, 20 time-inde-
pendent sources were “placed” at the boundary of
the breast and 20 “detector readings” were ob-
tained for each source, for all reference and
pathology-containing media. The position of the
sources and detector were confined to a coronal
plane located halfway between the chest wall and
nipple and bisecting the tumors. The normalized
photon intensity in each voxel was also recorded
for the reference medium in each set for weight
matrix calculations.

Image reconstruction

A variety of numerical methods have been devel-
oped to solve systems of linear equations. A criti-
cal measure of a method’s practical usefulness is
its performance on ill-conditioned or ill-posed
systems. For this problem, there are two princi-
pal sources of ill-posedness: factors intrinsic to the
model and to the physical measurement. In our
case, the weight matrices are invariably ill-condi-
tioned (almost linearly dependent columns).
Physically, each column corresponds to a single
voxel. As the optical thickness of the medium in-
creases, the weights for neighboring voxels deep
in the interior become nearly equal. The weight is
a function of, among other things, the source con-
dition; that is, the weight in a particular voxel de-
pends on whether the source is continuous, time-
harmonic, or an impulse. Consideration of the
trade-offs between cost and complexity of the
source condition and the conditioning of the
weight matrix is one issue of particular impor-
tance. It is also one that can be easily evaluated
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Table 2. Parameters used in solving the forward problem.

Problem Voxel
size length
Type (voxels) (mm)

Approx.
breast
volume (cm?®)

Tumor
volume
(em?)

] 98 % 70 x 48 1.75 1,590
il 98 x 70 x 48 0.9 215
l 98 x 70 x 48 0.9 215
v 98x70x48 1.75 1,590
v 49 x 35 x 24 2.7 730
Vi 49 x 35 x 24 2.7 730
Vil 98 x 70 x 48 1.35 730

1.16
0.16
0.16
1.16
0.53
0.53
0.53

using the MR-based modeling scheme we have
adopted.

Any real system will have limits on the available
views, scan times, source intensities, and number
and location of source-detector pairs. Each of
these factors also influences the conditioning of
the weight matrix. Thus, an important issue to ex-
plore will be the dependence of image quality and
stability on each of these parameters in relation
to practical limits of data collection. Some pre-
liminary results evaluating these issues are de-
scribed below.

For problems of the type we are considering,
selecting an efficient imaging algorithm is a key
factor in practical development. Imaging meth-
ods that employ forms of energy having well-de-
fined paths through the target (such as X-ray CT)
can take advantage of highly efficient transform
methods, because of the one-to-one correspon-
dence of each one-dimensional projection in
physical space to a one-dimensional contour in
Fourier space. Unfortunately, such methods are
not applicable to the optical tomography prob-
lem. Instead, we have employed the more general,
but often computationally more intensive, class of
algebraic methods used to iteratively solve sys-
tems of linear equations. While many methods
are available, selection of which is most appropri-
ate is often based on # posteriori evaluation of the
image quality and algorithm stability. In our stud-
ies we have selected three algorithms, all basically
algebraic solvers. Two of these, the conjugate gra-
dient descent (CGD) and simultaneous algebraic
reconstruction technique (SART), are simultane-
ous methods, while the third, projection onto
convex sets (POCS), is sequential.

In the CGD method,!? all data from detector
readings are incorporated into each update at the
same time. The formula for the estimate of A,
in the nth iteration, Ap}, is

ARy =Ap " —od” )
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The initial estimate of the absorpton coefficient
perturbation is Ap2, and the initial values taken for
the other parameters'? are g° = WI(7Ap-AR),
B' =0, and d* = —g°. The gradient and conjugate
gradient vectors are denoted by g” and d”, re-
spectively, of" is the step size, and |- || denotes the
Euclidean norm of a vector. Theoretically, this al-
gorithm should converge after a number of itera-
tions less than or equal to the number of un-
knowns. In practice, round-off errors in the
computations may increase the number of iter-
ations required for convergence, or prevent it
altogether.

"The ART (algebraic reconstruction technique)
method was first developed in the early 1970s for
reconstructing 3D images of cell organelles from
sets of 2D electron micrographs. It has since been
widely used as a reconstruction algorithm for X-
ray CT and has undergone many revisions.'> ART
is a sequentia] algorithm and the images it pro-
duces typically exhibit certain characteristic types
of artifacts. A simultaneous algorithm named
SIRT (simultaneous iterative reconstruction tech-
nique) was developed in part as a remedy for these
artifacts, but it tends to converge more slowly
than ART." The SART algorithm combines the
positive features of ART and SIRT. The formula
used to compute the zth estimate of the absorp-
tion perturbation in the jth voxel is'®

AR; — TwyAiuys
>

Sw.
> Swy
n o _ n—1 7
Alg ;= Mg + Zw,]

(10)

where 7 is the source-detector pair index. We
chose the SART algorithm because of its ten-
dency to enhance image features in regions where
all the w; are small.

POCS is a sequential projection method that
reaches the intersection point of L constraint sets

by projecting the current estimate of the solution

onto each set C; (a set which satisfies the /th con-
straint), / = 1, 2, ..., L, sequentally and itera-
tively.'? A set is convex if any linear combination
kx + (1 — &)y of two of its elements x and y, with
0 < £ <1, 1is also a member of the set. Lines, cir-
cles, and squares, and their higher-dimensional
analogs, are familiar examples of convex sets. Each
step in POCS can be represented by

Apj =P oPpo..o BAp] (11

Here, P, represents the projection operator onto
Gy, such that P;Ap/ is the element in C;thatis clos-
est to A, and the symbol ° denotes composition
of functions. It has been proved that, as long as the
intersection of the constraint sets is not empty, it-
erative projections onto these sets will converge to
their intersection.!? The subspace of solutions to
each linear equation in Equation 8 is a convex set.
An advantage of POCS is that it can easily incor-
porate nonlinear constraints in addition, if the sets
of solutions to those constraints are convex. The
usual source for these nonlinear constraints is a pri-
ori information, that is, known properties of the
medium that help limit the set of possible solutions.
An example would be a range constraint, which
limits the values of the reconstructed results.

Computational issues should also be consid-
ered, such as how well a specified reconstruction
algorithm can be mapped to the architecture of a
particular computing platform. Further, factors
influencing which algorithm is most appropriate
will themselves be functions of such things as lim-
itations of measurement and properties of the tar-
get medium. For this reason, we believe that we
must continue to consider more than one algo-
rithm. :

Results of optical imaging experiments

In the following, we describe the results we ob-
tained based on the analysis of MR-derived seg-
mented maps. Results presented amount to a first-
order Born solution. Recently, we have extended
this to include a recursive solver where the initial
solution is used to update the forward problem
and where both the diffusion and absorption co-
efficient perturbations are solved for simultane-
ously.® In all cases, we performed 2D reconstruc-
tions (forcing the image to be symmetric in the
direction perpendicular to the plane defined by
the sources and detectors) and we imposed posi-
tive range constraints on reconstruction results
after each iteration: A= 01 A, ;< 0. Also, in
all cases, computed images were based on analysis
of underdetermined data sets (that is, 400
source—detector pairs, 1,584 unknowns (the num-
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ber of voxels in the reconstructed image)). For re-
constructions with added noise, a number sam-
pled from a Gaussian pseudorandom number
generator was added to each computed detector
reading. Noise is quantified by means of the sig-
nal-to-noise ratio, which we define as

average signal power

[in dB]

12)

Figure 3 shows a plot of the logarithm of com-
puted photon intensities in several sagittal views
for a source directed normal to the breast in the
region of the nipple (left side). The particular case
is based on Type V background conditions. Figure
3a shows the result for the reference medium
without added tumors, and 3b the result when two
tumors are added. The two darkened structures
in slice y17 indicate the position of the added tu-
mors. The jagged edge on the left illustrates the
detected edge of the tissue for the particular
thresholding values chosen and does not repre-
sent an error in solving the forward problem.

Data shown in Figure 4 are the computed de-
tector responses for each of the background con-
ditions tested for a source located at position 6.
Inspection reveals that, as expected, a large range
of intensity values is obtained, with the detector
located opposite the source (refer back to Figure
2) usually having the lowest values. Comparison
of these values to allowable source intensities in-
dicates that only the Type VII medium yields val-
ues that are so low as to be effectively unmeasur-
able. Background scattering properties for Types
V and VI media are within the range reported for
breast tissue. The others represent values that
likely underestimate the transport scattering
lengths. As indicated in Table 2, the physical di-
mensions of the former correspond to a breast
volume of approximately 730 cm?, which, at the
position of the sensor array, is equivalent to prob-
ing a tissue thickness of approximately 10 cm. We
consider this finding encouraging, as it suggests
that physical measurements could be performed
on breasts of this size and still yield useful data
without the usual rostral-caudal compression used
in X-ray mammography.

Figure 5 shows the results of 2D reconstruc-
tions using the CGD algorithm for each of the
different test media containing added tumors, af-
ter 1,000 iterations. In all cases, both tumors are
well resolved, their locations are correctly identi-
fied, and the image is relatively free of artifacts.
What qualitative errors are observed are mainly
due to an underestimate in the physical sizes of
the tumors, which appears most pronounced for

SNR =10 loglo

noise variance
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(a)

(b)

Figure 3. Computed solutions to the forward problem (time-
independent diffusion equation) illustrating diffuse intensities inside the
breast model based on real MR-derived geometry. (a) the reference
breast medium, (b) medium containing two simulated “pathologies.”
Note the added “tumors” in slice y17.
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Figure 4. Computed surface intensity values for source position 6, for the
different assigned values of optical coefficients listed in Table 1. Values
shown correspond to simulations in the presence of added
“pathologies.” The y axis is the log of the detected intensity.

71



MRI-GUIDED OPTICAL TOMOGRAPHY

Type | Type Il Type il Type IV
] L | i &
# E z 5
Type V Type VI Type Vil
F < -
ot ] z

Figure 5. Reconstructed images of MR-segmented data sets with added
tumors, showing the promise of optical tomography.

CGD
10 1,000
M x
POCS
10 1,000
!& l.
SART
10 1,000
Figure 6. Images ob-
tained of Type VI i =
media using the ’
CGD, POCS, and
SART algorithms, i &
with no added noise, :
after the indicated
number of
iterations.
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tissue backgrounds having the largest values of re-
duced scattering coefficients. It is not surprising
that Jess-than-perfect images are recovered, given
that the computed solutions correspond to a sin-
gle step of the perturbation model. A comparison
of image quality achieved using the different al-
gorithms as a function of iteration number is
shown in Figure 6 for the Type VI medium. Re-
sults show similar image quality is obtained using
the CGD and SART algorithms and that good
separation is achieved after only 10 iterations. For
these data sets, results from the POCS algorithm
were of poorer quality, with artifacts in the cen-
tral region. Because the order in which the data
are analyzed can influence the computed result,
additional testing of the POCS algorithm is nec-
essary before conclusions can be made regarding
its suitability to this problem.

Adding noise

As any real measurement contains noise, it is
important to examine the stability of computed
solutions to added noise in the detector readings.
Results shown in Figure 7 are reconstructions ob-
tained after 100 iterations with the SART algo-
rithm when 0 dB Gaussian white noise was added
to the noise-free detector readings. (This is a lot
of noise—a level equal to the mean value of the
signal strength; see Equation 12.) Inspection re-
veals that the influence of noise is strongly de-
pendent on the type of background medium. In
fact, rather paradoxically, it appears to be nega-
tively correlated with the background scattering
coefficient (that is, the stronger the background
scattering, the Jess effect noise has on the image).
For Type I media, the computed image is mostly
artifact. For Types IT and III, the images of the
two tumors coalesce into a single central mass.
For Type IV media, the two tumors are evident
but their image densities are not the same. For the
other types, good separation of the tumors is evi-
dent. Interestingly, however, even for Type I me-
dia, a qualitatively accurate solution can be
achieved by simply increasing the number of it-
erations; in the case shown, to 3,000.

It deserves mention that the level of added noise
is greater than would ordinarily be expected to
yield usable images. While usually this finding
would be very positive, our enthusiasm is tem-
pered by the observation that because the range
of the detector readings spans many orders of
magnitude, the added noise primarily affects the
lowest detector readings. In addition, we have im-
posed range constraints on the reconstruction re-
sults and limited the dimensions of the unknowns
to only a single coefficient. In practice, because
differences in scattering will cause a redistribu-
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tion of photons, the ability to compute quantita-
tively accurate solutions will require that less
stringent range constraints be imposed and that
solutions for both absorption and scattering be at-
tempted. Reconstruction of both will be neces-
sary in order to implement algorithms in which
iterative updates of the forward problem are com-
puted. In fact, we have recently reported prelim-
inary findings obtained from MR breast maps in
which both coefficients were simultaneously
solved for without imposition of any range con-
straints. In that work we observed a much greater
sensitivity to added noise.?

Other sources of error )

For an arbitrary medium, there are basically
four sources of error in specifying the reference
state: incorrect estimates of its overall shape, its
volume, its internal structure, or its assigned co-
efficients. Should MR data be available, especially
if they were acquired simultaneously with the op-
tical measurement, then specification of the first
three should be fairly straightforward. As for the
last, specification of the optical coefficients ide-
ally should come from the measured optical data.
This is a nontrivial issue that has received inade-
quate attention. In principle, errors in estimates
of the reference could be compensated for by per-
forming iterative updates of the forward problem.
"This might be feasible, should only a few updates
be required. However, if a large number are
needed, the computational burden could quickly
become unmanageable, espe-

cially for 3D problems. Should

eled the effects of inaccurate estimates of the
background scattering coefficients, of assuming
the reference medium is homogeneous, and of
over/underestimating the breast size. For the first
computation, we used weight functions derived
from the Type V medium to evaluate the detec-
tor readings from the Type VI medium, and vice
versa. Table 1 shows that these media differ only
in the values of the assigned scattering coeffi-
cients. In this case we assume accurate knowledge
of the anatomy (breast shape, volume, and inter-
nal structure) but not of the optical coefficients.
Figure 8 shows that, except for images computed
using the POCS algorithm, surprisingly good re-
constructions are obtained. Also shown in Figure 8
is the effect of the case in which the reference
medium is assumed to be homogeneous. In this
case only artifacts are reconstructed. It would ap-
pear, therefore, that some knowledge of the in-
ternal composition is required to recover a quali-
tatively accurate image, at least for a one-step
solution of the perturbation model.

To study the effect of errors in the estimated vol-
ume, we conducted a study similar to the preced-
ing, but interchanging weight functions and de-
tector readings for Types IIT and IV media. These
media have the same background optical coeffi-
cients but differ in volume by a factor of eight.
Thus, we assume accurate knowledge of the inter-
nal structure, overall shape, and coefficients. Fig-
ure 9 shows, interestingly, that errors in assumed
volume lead to errors in the distance between the

any reader have practical in-
sights into this, the authors
would be most grateful in learn-
ing about them.

Results shown in Figures 8
and 9 examine the effect that er-
rors arising from three of the
above-mentioned sources have
on image quality, as a function
of algorithm used. We assume

Type |

Type | (3,000 iter) Type Il

L

Type llI

accurate knowledge of the shape
of the medium, but introduce
systematic errors in the other
factors. Our motivation for un-
dertaking this study is an appre- L
ciation that, in practice, knowl-
edge of the correct reference
medium, from which the weight
functions are calculated, is itself
incomplete. Thus, it is likely

Type IV

Type V Type VI

5

Type ViI

that only an approximation can
be made. For the results shown
in these figures, we have mod-
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Figure 7. Images after 100 iterations (and in one case, 3,000) with the SART algorithm in
the presence of considerable added noise.
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Figure 8. Analysis of sources of error. (a)—(c) Images for Types V and VI
media calculated with wrong weights, using the CGD, POCS, and SART
algorithms in the absence of added noise after 1,000 iterations. W5D6
means the weight function computed for Type V media was used to
evaluate detector readings from Type VI media. W6D5 means the oppo-
site. (d) Assuming a homogeneous reference medium, after 10 and
1,000 iterations.
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Figure 9. Analysis of sources of error. Images obtained using the SART
algorithm after 100 iterations, for Type Ill and IV media. For
abbreviation scheme see Figure 8.
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Table 3. Quantitative comparison of reconstruction
results (CGD algorithm, noise-free data, 1,000 iter-
ations). Columns list values for upper and lower

virtual “tumors.”

© Medium
type:..

Lo
WSD6:"
WeDs

reconstructed tumors, the direction of which de-
pends on the source of the weight function.

Thus far, results shown have emphasized the
qualitative accuracy and stability of computed im-
ages. A quantitative analysis of the image data ob-
tained by the CGD algorithm for the different
breast types is shown. in Table 3. These results are
derived from data shown in Figure 5. The tabu-
lated numbers correspond to the integrated im-
age intensity values for the virtual tumors present
in the upper and lower halves of the images. Also
listed are some corresponding values when an in-
correct weight functon is used. Three interest-
ing observations can be made. First, even though
qualitatively accurate results can be obtained,
there are significant quantitative errors. Second,
the magnitude of this error increases with in-
creases in the strength of the perturbation. Third,
a two-fold systematic error in the weighting func-
tions can produce large quantitative errors (ap-
proximately 300-fold) in the estimated cross-sec-
tion perturbations. These findings strongly
suggest that to recover quantitatively accurate re-
sults, it will be necessary to compute iterative up-
dates to the forward and inverse problems.

Next we turn to issues regarding data collec-
tion. As mentioned, variables under experimental
control include, among others, the source condi-
tion, number and location of sources, and num-
ber and location of detectors per source. For the
results included in this article, all simulated de-
tector values were obtained using time-indepen-
dent sources. (The reader is referred elsewhere®
for preliminary results on similar studies using
time-harmonic sources.) Figures 10 and 11 show
results of our examination of the effect of limit-
ing the view angle of measurement in the forward,
backward, and side directions, and the effect of a
uniform but sparse detector scheme.

Figure 10 llustrates the variables we examined.
Figure 10a shows the geometry of measurement
when three detectors in the forward (side oppo-
site each source) hemisphere are deleted (dark-
ened circles). Figure 10b shows the configuration
for a uniform but sparse detection. Figures 10c l-
lustrates a configuration complementary to that
in 10a (that is, detectors are deleted in the back-
ward hemisphere). Figure 10d models a com-
pressed geometry (no sources or detectors at the
sides). For clarity, we adopt the abbreviations xS
for number of sources, xD for number of detec- -
tors per source, and the subscripts f for forward
and 4 for backward.

Results of this study, using the SART algorithm
for a range of different geometries of measure-
ment, are shown in Figure 11. The image labeled
20S-20D is the control (no detectors or sources
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deleted). The effect of implementing a sparse
configuration is shown in the next two panels
(20S-10D and 10S-10D). Halving the number of
detectors per source causes a significant distor-
tion in the image, but the tumors still are success-
fully resolved. If the number of sources is also
halved (to 100 source-detector pairs), only arti-
fact is recovered. The next image to the right
shows the effect of deleting sources and detectors
from the sides, the so-called compressed geome-
try. Interestingly, the effect is qualitatively simi-
lar to that seen for the case of 20S-10D sparse
geometry. The middle three panels show the ef-
fect of deleting three, five, and seven adjacent de-
tectors in the forward hemisphere. The bottom
four panels show the effect of deleting three to
nine adjacent detectors in the backward hemi-
sphere. Qualitatively, the results are roughly
equivalent; deleting more detectors produces im-
ages in which tumor locations are increasingly in-
accurate, the distance separating tumors is in-
creasingly underestimated, and

20S-17D;

O o O

20S-10D

Compressed

°
09%o0

OO
Figure 10. Source-detector geometries used for
view-angle study.

the level of artifacts is greater.
When the same data were
evaluated using the CGD algo-
rithm (not shown), qualitatively &
similar results were obtained but
with an even greater artifact
level. A quantitative comparison
of images reconstructed with
added noise revealed that while
qualitatively recognizable im-

208-20D

208-10D

108-10D

Compressed

ages were obtained, the com-

puted cross sections are strongly
influenced by added noise. The
magnitude and direction of this
effect varies with the number
and geometric arrangement of
sources and detectors.

208-17D;

20S-15D;

20S-13D;

We have examined the po-
e : 208-17D,,
tential utility of incorpo-
rating MR-derived anatomical
image data to aid in the compu-
tation of tomographic images of k
the female breast based on the B
analysis of computed time-inde-
pendent near-infrared optical
measurements. There are some,

20S-15D,

20S-13D,

208-11D,,

especially among those who
serve on study sections of the
National Institutes of Health,
who discount the feasibility of
imaging thick tissues at NIR
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Figure 11. More analysis of sources of error: effects of varying the number of optical
sources and detectors. Images were obtained using the SART algorithm after 1,000 itera-
tions for a Type V medium. The indicated illumination geometries are explained in
Figure 10 and in the text.




76

MRI-GUIDED OPTICAL TOMOGRAPHY

wavelengths. Whereas we recognize that many of
the computations reported assume detailed prior
knowledge about the target medium, it is our be-
lief that if the MR data are obtained at the same
time as the optical data, this assumption can be
largely satisfied. We also realize that even if such
knowledge is available, there is much still to be
learned and tested before practical systems can be
developed. Examples of outstanding questions are

¢ Given the expected range of pathologies that
exist in clinical settings, is the diffusion approx-
imation an adequate modeling scheme or will
more computationally intensive solutions to the
transport equation prove necessary?

¢ Are solutions to the first-order Born or Rytov
approximations sufficient, or will iterative up-
dates be required?

¢ Is a perturbation formulation computationally
tractable for 3D imaging?

¢ Can a free-standing imaging system be devel-
oped?

We contend that the ability to answer such
questions will be greatly facilitated by evaluating
anatomically accurate models such as those easily
derived from MR data. Much work remains, with
no guarantee of success. We do hope, however,
that the results presented here put to rest any
doubts regarding the intrinsic feasibility of com-
puting tomographic images based on the analysis
of diffusely scattered light. While these results are
preliminary, we believe they strongly szggest that
the problem is solvable. No doubt this technique
is computationally much more intensive than
X-ray CT or MR imaging. However, significant
improvements in computational speed occur reg-
ularly. What remains is to work out the details. To
those who ask “why bother?,” we remind the
reader that optical methods are orders of magni-
tude more sensitive than other imaging modali-
ties, that they are capable of monitoring situations
and events critical to sustaining life, that they em-
ploy nondamaging energy sources, and that the
instrumentation can be relatively compact,
portable, and low in cost.

Specific insights gained from the current stud-
ies point to the importance of having prior knowl-
edge of the internal anatomy and of using fully to-
mographic data collection schemes. A point of
further study will be to ascertain the sensitivity of
image quality to errors in image segmentation. Tn
particular, it should be useful to demonstrate
whether MR data “averaged” for a defined para-
meter set (breast size, age, skin color, etc.) over
some subset of the adult female population can be
substituted for MR data on a specific individual.

Finally, it deserves mention that there are at least
two additional measurement parameters, spectro-
scopic data and fluorescence, that are yet to be
fully explored and that could aid in the optical to-
mography problem. Fluorescence is appealing be~
cause, like MRI but unlike radioisotopes, it is often
sensitive to changes in the immediate chemical en-
vironment. Fluorescent probes have been success-
fully substituted for radioisotopes in many 7 vitro
diagnostic methods. Their use in tomographic
imaging applications would be a natural extension.
Computationally, fluorescence tomography re-
quires the solution of two coupled inverse prob-
lems. The first deals with the problem described
here. This is necessary to predict the distribution
of the excitatory field. The second computes the
distribution of fluorescence parameters from mea-
surements of fluorescent light emerging at the sur-
face. Through judicious selection of fluorescence
probes that are sénsitive to chemical environments
often associated with diseased states and by link-
age of these to specific biotargeting agents, such
as a monoclonal antibody, significant increases in
the sensitivity and specificity of diagnostic proce-
dures might be achieved. ®
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