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To address the problem of mixing in EEG or MEG connectivity analysis we exploit that noninteracting brain sources do not
contribute systematically to the imaginary part of the cross-spectrum. Firstly, we propose to apply the existing subspace method
“RAP-MUSIC” to the subspace found from the dominant singular vectors of the imaginary part of the cross-spectrum rather
than to the conventionally used covariance matrix. Secondly, to estimate the specific sources interacting with each other, we use a
modified LCMV-beamformer approach in which the source direction for each voxel was determined by maximizing the imaginary
coherence with respect to a given reference. These two methods are applicable in this form only if the number of interacting sources
is even, because odd-dimensional subspaces collapse to even-dimensional ones. Simulations show that (a) RAP-MUSIC based on
the imaginary part of the cross-spectrum accurately finds the correct source locations, that (b) conventional RAP-MUSIC fails to
do so since it is highly influenced by noninteracting sources, and that (c) the second method correctly identifies those sources which
are interacting with the reference. The methods are also applied to real data for a motor paradigm, resulting in the localization of
four interacting sources presumably in sensory-motor areas.

1. Introduction

Electroencephalography (EEG) and magnetoencephalogra-
phy (MEG) are noninvasive measurements of brain activity
with an excellent temporal resolution in the order of milli-
seconds but poor spatial resolution. In the past decades
the main focus was the analysis of event-related potentials,
that is, the average brain response to a given stimulus.
More recently, the variability of brain activity and espe-
cially its interpretation as signatures from the brain as a
dynamical network has attracted many researchers [1, 2]. A
specific expression of variability is the occurrence of neural
oscillations which are hypothesized to be a mechanism
of functional communication within the brain [3–6]. A

large variety of methods exist to identify interactions of
rhythmic activity, including coherence [7], AR modeling [8],
Granger causality [9], and methods based on phase couplings
[10].

The most serious problem in the interpretation of EEG
or MEG in terms of brain interaction arises from the poor
spatial resolution. First of all, at the sensor level it is not clear
whether a functional relationship between sensors reflects an
interaction between two different neural populations or is
due to the mixing of sources into sensors. Furthermore, since
the inverse problem, that is,the calculation of brain activity
from EEG or MEG data, has no unique solution, any estimate
is error prone: also estimated source activities are in fact a
largely unknown mixture of the true activities. While this
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problem, usually termed “artifact of volume conduction,”
is well known since a long time [11], it is increasingly
addressed lately [12–19]. One major result is that also
sophisticated and popular inverse methods like beamformers
may produce substantial misinterpretations of the results
[18].

To overcome the problem of volume conduction it was
suggested to study the imaginary part of coherency [20]
because nonvanishing values of that quantity can only be
explained by true interactions. Imaginary part of coherency
has been used for the estimation of functional connectivity
inside the brain in several studies [21–23]. On the sensor
level, this allows to establish the presence of brain interac-
tions but only little can be said about the origins of the inter-
actions inside the brain. Analysis on sensor level was further
pursued in [24] where a method was proposed to separate
pairs of interacting sources from each other. The results are
two-dimensional subspaces which contain the topographies,
that is the electric potentials or magnetic fields, for each pair
of sources. A further decomposition into the topographies of
the individual sources is not possible without making spatial
assumptions about the sources. In [17] such a decomposition
was performed assuming that respective source distributions,
estimated as minimum L2-norm solutions, have minimal
spatial overlap. The problem here is that such minimum
norm solutions are extremely blurred, and even if the
unknown true sources are not overlapping the estimates may
have substantial spatial overlap.

In this paper we propose a more natural approach to deal
with the case when the outcomes of a sensor level approach
are subspaces rather than topographies of individual sources.
In fact, subspace methods like the Multiple Signal Classifica-
tion (MUSIC) and variants of it to be discussed below are
designed to find sources which explain subspaces by dipolar
sources [25–27]. Such methods are typically applied on
low-rank approximations of covariance matrices and work
optimally if all sources are independent of each other. To
localize interacting sources, we here suggest to simply apply
the subspace methods to low-rank approximations of the
imaginary part of the cross-spectrum. We show next that this
method correctly estimates the source locations also in the
presence of strong background noise.

The second question we address is how to estimate with
which other source each of the found sources is interacting.
This analysis will be based on LCMV beamforming, which
is a popular inverse method to analyze EEG or MEG data
[12, 28]. Similarly to localization using MUSIC, we will adapt
the beamformer to be most sensitive to interactions rather
than being sensitive to strong power.

This paper is organized as follows. In Section 2 we will
explain the mathematical background on the imaginary part
of the cross-spectrum, subspace methods, and on beam-
formers. In Section 3 we will present our modifications of
the RAP-MUSIC approach and of beamformers in order to
study interacting brain sources, and in Section 4 we will
demonstrate the performance using simulations of two and
four interacting sources in the presence of background noise
of various strengths as well as real data. A conclusion is given
in Section 5.

2. Background

2.1. MUSIC and RAP-MUSIC. Multiple Signal Classification
(MUSIC) is a localization method based on dominant
subspaces spanned by the vector structure of the data [25].
The general procedure is to divide the vector space of the
data into a signal subspace and a noise-only subspace which
is orthogonal to the signal subspace. The algorithm is used
for acoustic imaging [29, 30] and for the analysis of elec-
trophysiological recordings of brain activity [26, 27]. It finds
the source locations as those for which the principle angle
between the noise subspace and the forward model of the
source is maximum or, equivalently, for which the principle
angle between the signal subspace and the forward model
is minimal. In a nutshell, the MUSIC algorithm scans all
possible source locations and estimates whether a source at
each location is consistent with the measured data explicitly
including the possibility that several sources are simultane-
ously active and in general not independent of each other.

We will at first consider the case of fixed dipole orienta-
tions. For MUSIC, a subspace of the signal is determined as
the space spanned by the set of eigenvectors corresponding
to the P largest eigenvalues of the covariance matrix of the
data C, which itself has usually full rank for noisy data. P
is the (assumed) number of sources, and it is assumed to
be substantially smaller than the number of electrodes. (The
true number of sources is in general unknown and it is
advisable to choose P rather too large than too small.)

We denote the forward model of the dipole at location
qi as LM×1, where M is the number of electrodes. In order
to estimate the consistency between the forward model of a
given grid point and the subspace, the angle between them is
calculated as

cos2θ
(
L,φ

) = LTφφTL

LTL
, (1)

where (·)T denotes transpose, and φ is the matrix of the P
largest eigenvalues of the covariance matrix of the data. We
note that formulations using angles between model and noise
subspace are formally equivalent. Formulations using signal
subspace only are computationally more efficient since the
dimensionality of the signal subspace is lower compared to
the dimensionality of the noise subspace.

The angle θ is calculated in all the grid points and the
forward model corresponding to the minimum angle is esti-
mated as the dipole pattern. If, as in EEG or MEG, for each
grid point several forward solutions exist, corresponding to
three different dipole orientations, the source orientation
corresponding to the largest value of cos θ is chosen.

The main disadvantage of MUSIC is that finding several
maxima is difficult when the number of sources increases
[27]. As a remedy, several modifications of MUSIC are
proposed which are based on the idea of localizing the
sources sequentially [27, 31–33]. One of the variants pro-
posed by Mosher and Leahy [27] is a modification called
Recursively Applied and Projected (RAP)-MUSIC. Here,
instead of searching simultaneously for several local maxima,
only global maxima are determined iteratively. In order to
find the next source location, the subspace is updated by



Computational and Mathematical Methods in Medicine 3

projecting out the previously found topographies and then
the maximization is repeated.

To be explicit, let Lk for k = 1 · · ·n − 1 be the set of
patterns of the n−1 previously found sources. In order to find
the location of the nth source, the new subspace is defined
by removing the patterns both from the forward models and
the subspace estimation. The projection matrix for the nth
source estimation reads

P = I − A
(
ATA

)−1
AT , (2)

where A = [L1L2 · · ·Ln−1] is the matrix containing as
columns all the previously found dipole patterns.

Similarly to the first MUSIC scan, the angle between the
forward model at each grid point and the subspace is calcu-
lated while the forward models and the subspace are updated
by projecting out the previous source patterns. Therefore

cos2θ
(
LP ,φP

) = LTPφPφ
T
P LP

LTPLP
, (3)

where LP = PL and ΦP = ortho(PΦ) where ortho(E)
orthonormalizes the columns of a matrix E.

The algorithm performs as many iterations as the
predefined number of sources.

For unknown dipole orientations an optimization over
orientation is included in the calculation of the angle θ. Then

L = L̂α, (4)

where L̂ is an N × 3 matrix containing as columns the
topographies of dipoles in x-, y- and z-direction and α is a
3× 1 vector. Then the angle is given as

cos2θ
(
LP ,φP

) = max
α

αTL̂TPφPφ
T
P L̂Pα

αTL̂TP L̂Pα
, (5)

with L̂P = PL̂. The maximization can be done analytically,
and α is given by the eigenvector corresponding to the
maximum eigenvalue of

D ≡
(
L̂TP L̂P

)−1
L̂TPφPφ

T
P L̂P. (6)

Note that the RAP-MUSIC search results both in location
and orientation of the sources.

2.2. Imaginary Part of Cross-Spectrum. A covariance matrix
is a measure of linear coupling between two signals in the
time domain. The analogue in the Fourier domain is the
complex valued cross-spectrum which reflects the linear
coupling of the signals for all frequencies. Due to the artifacts
of volume conduction, it is not always easy to differentiate
between the real connectivities and the ones caused by vol-
ume conduction. Nolte et al. [20] suggest that the imaginary
part of coherency, which is in fact the normalized imaginary
part of cross-spectrum, is a measure robust to artifacts of vol-
ume conduction in the sense that a nonvanishing imaginary
part cannot be explained by independent sources regardless

of the number of sources and how they are mapped into sen-
sors provided that this mapping is essentially instantaneous
which is in fact an excellent approximation for frequencies
below 1 KHz [34].

Coherency between two EEG channels i and j is defined
as

Cij
(
f
) = Si j

(
f
)

(
Sii
(
f
)
Sj j
(
f
))1/2 , (7)

where Si j( f ) is the cross-spectrum of the two channels at
frequency f and is defined as

Si j
(
f
) =

〈
xi
(
f
)
x∗j
(
f
)〉

, (8)

where xi( f ) and xj( f ) are the (complex) Fourier transfor-
mations of the time series of xi(t) and xj(t) of channels i
and j, respectively, 〈·〉 is the expectation value, and ∗ is
complex conjugation. In practice, the expectation value is
obtained by averaging over a large number of epochs. Sii( f )
and Sj j( f ) are the autospectra of the signals at channels i and
j, respectively.

2.3. Beamformers. The goal of beamforming is to estimate
the time course s(t) of a dipole at a specific location in the
brain as accurate as possible. To achieve that goal, sensor data
are linearly combined such that the (presumed) activity of
other sources is minimized [35]. We here recall shortly the
basic procedure.

If the location where we want to calculate the time course
is qi and the activity of the dipole at this location is si(t), the
data X(t) measured with EEG electrodes is the superposition
of N dipoles at sampling time t:

X(t) =
N∑

i=1

gisi(t) + n(t), (9)

where gi is the forward model for a source at location qi
with given orientation. The vector gi is of size M × 1, where
M is the number of electrodes and n(t) is additive noise
which is assumed here to arise from noninteracting sources.
A beamformer is a spatial filter constructed to (a) pass
the signal from the source of interest with unit magnitude
and (b) to minimize total power. If the source of interest
is independent of all other sources (called background),
power values of source of interest and background are
additive. Therefore, minimizing total power is equivalent
to minimizing the power of the background and hence to
maximizing signal-to-noise ratio. At a specific location inside
the brain we estimate the signals yj(t), for j = 1, 2, 3,
corresponding to the source component in x-, y-, and z-
direction, as

yj(t) = WT
j X(t). (10)

If we denote the topography of the source in direction j
as g j the filter weights Wj are chosen to satisfy the following
constraint:

minW j

(
WT

j CW j

)
(11)

subject to WT
j g j = 1, (12)
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where the matrix C is the covariance matrix of the measured
data in time domain or the cross-spectrum matrix in
frequency domain. The optimization is solved by

W j = C−1g j

[
gT
j C

−1g j

]−1
. (13)

So far, all dipole components were calculated, and such
a beamformer is called “vector beamformer.” To specify
the direction at each grid point, it is a common approach
to maximize the power. We only mention this without
going into details, because we are interested in observing
interacting and not necessarily strong sources. The respective
choice of orientation will be explained in Section 3.

One point which should be considered in beamforming
is the correlation between the sources. Due to the presence
of correlated sources, the estimated variance of the source of
interest is significantly less than the true value. Therefore, a
modified version of LCMV called Nulling Beamformer [12,
36] was suggested forcing an additional nulling constraint
in order to make sure that the influence of the sources
at specific other locations and orientations is suppressed.
We recall the procedure for a set of sources with given
orientation. Combining the nulling constraint with the unit
gain condition (12) in LCMV results in

WT
i G = fTi , (14)

whereG = [g1, . . . , gN ] contains as columns the topographies
of N sources and

fi = [0 · · · 010 · · · 0]T , (15)

is a vector whose ith element is one and the rest are zero.
Solving the equation, using Lagrange multipliers, results in

Wi = C−1G
[
GTC−1G

]−1
fi. (16)

The obtained nulling beamformer gain has a unit gain at the
location of interest, zero gains at a small set of given locations
other than the location of interest and minimizes the power
for the ith source.

We finally note that a vector beamformer is often for-
mulated as a nulling beamformer for which for each dipole
location and direction j both other orthogonal directions
were nulled out.

An LCMV beamformer is really a two-step procedure
with two different rationals. In the first step, spatial filters
are designed to estimate brain activity for each location in
the brain as clean as possible. This step is not a localization
approach. The localization is done in the second step by
defining the most interesting sources as those which have
strongest power. Below, we will use only the first step of the
beamformer formulation because we are interested only in
interacting sources which are not necessarily the ones with
strongest power.

3. New Methods

3.1. Getting Subspaces from Imaginary Part of Cross-Spectrum
(CS). The standard way to define the subspace of the

data used for the MUSIC algorithm, as we discussed in
Section 2.1, is to calculate the eigenvectors of the covariance
matrix of the data. We suggest to replace the covariance
matrix by the imaginary part of the cross-spectrum of the
data at a specific frequency in RAP-MUSIC. As we discussed
in Section 2.2 , the imaginary part of the cross-spectrum
is inconsistent with noninteracting sources. Since we are
interested in localizing the interacting sources, we defined the
subspace of the data based on the imaginary part of the cross-
spectrum just to make sure that noninteracting sources like
noise do not appear in localization results.

3.2. Maximizing Imaginary Coherence in Subspaces. Accord-
ing to the definition, coherency between two EEG channels
i and j is equivalent to the complex valued cross-spectrum
normalized by the power in the channels. In order to
calculate the coherency between the source location i and any
other grid point in the brain, the signals originating from
these locations will be calculated using a beamformer. The
moment of a dipole at location j is therefore calculated as

y
(
f
) = AX

(
f
)
, (17)

where X( f ) is the Fourier transform of the data at frequency
f and filter weights, A, are calculated using either LCMV
beamformer or nulling beamformer. Let G = [g1, . . . , gN ]
be the matrix of dipole patterns of the dipoles estimated at
the source locations by RAP-MUSIC then the activity of the
source, s( f ), in the frequency domain at the ith location is

s
(
f
) = VT

i X
(
f
)
, Vi = (CR)−1G

[
GT(CR)−1G

]−1
fi. (18)

The filter weights at each source location Vi are calculated
using nulling beamformer weights in (16) and the vector fi is
defined in (16). The filter weights could also be estimated
using LCMV approach in (13) but in order to reduce the
interaction of other sources in the estimation of the time
course of the source of interest using nulling beamformer is
preferred. The matrix C in (16) and (13) is replaced by the
real part of cross-spectrum matrix of the data, CR, in order
to have real-valued weights instead of complex ones.

In a similar approach, the activity of each grid point
is calculated using (17) where the filter weights, A, are
calculated based on LCMV beamforming weights in (13) in
directions x, y, and z. In the classical LCMV beamformer,
the direction of the dipole is chosen as the direction which
maximizes the power of the signal at the corresponding
location but in a new approach, we suggest to choose the
direction of the dipole not based on the maximum power
but on the maximum imaginary part of coherency between a
reference and the dipole of interest.

Assuming z( f ) is the moment of the dipole at frequency
f at location j in the direction of maximum coherency with
location i (the seed location) then,

z
(
f
) = αTAX

(
f
)
, (19)

where α is the vector of size 3 × 1 which gives us the
(yet unknown) direction in which the imaginary part of
coherency is maximum.
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The cross-spectrum between the estimated source at
location i, s( f ), and the activity in direction of maximum
coherency at location j, z( f ), is defined as

〈
s
(
f
)
z∗
(
f
)〉 = VT

i

〈
X
(
f
)

XH
(
f
)〉

ATα, (20)

where 〈·〉 denotes the expectation value and∗ is the complex
conjugation. The autospectrum of the signal s at location i is
defined as

〈
s
(
f
)
s∗
(
f
)〉 = VT

i

〈
X
(
f
)

XH
(
f
)〉

Vi, (21)

where 〈X( f )XH( f )〉 is equal to the cross-spectrum of the
data. Similarly, the cross-spectrum of z( f ) at location j is
defined as

〈
z
(
f
)
z∗
(
f
)〉 = αTA

〈
X
(
f
)

XH
(
f
)〉

ATα. (22)

The imaginary part of coherency then reads

f (α) =
〈
s
(
f
)
z∗
(
f
)〉

〈
s
(
f
)
s∗
(
f
)〉〈

z
(
f
)
z∗
(
f
)〉

= VT
i CIATα

(
VT
i CVi

)1/2
(αTACATα)1/2

(23)

where CI denotes the imaginary part of cross-spectrum of
X( f ). Let us rename (VT

i CVi) as D1, (αTACATα) as D2,
and VT

i CIATα as N . In order to maximize f (α), we set the
derivative of f (α) to zero:

∂ f

∂α
=
(

VT
i CIAT

)T

D1/2
1 D1/2

2
− 1

2
N

D1/2
1 D1/2

2

∂

∂α

(
αTACRA

Tα
)
= 0,

(24)

where CR is the real part of C. Solving the equation results in

α =
(
ACRA

T
)−1

ACIVi. (25)

Substituting α in (23) gives us the maximum of the imaginary
part of coherency at frequency f . We used the above
maximization of coherency after applying the RAP-MUSIC
algorithm to the data in order to study the interactions
between the localized sources.

4. Results

4.1. Simulations. In this Section, we present the simulations
in which we compared the RAP-MUSIC results in the
case the subspace of the data is defined with the largest
eigenvalues of real part of the cross-spectrum to the case that
the subspace is defined based on the imaginary part of the
cross-spectrum. We also demonstrate the results of finding
the interaction between the sources after being localized by
RAP-MUSIC.

In the first simulation, two interacting sources are
produced at 10 Hz with the sampling frequency of 100 Hz.
The interaction was simulated simply as a delay: if x1(t) is

the signal of the first source, white noise narrowband filtered
at 10 Hz, then the signal of the second source reads x2(t) =
x1(t − τ) with the delay set as τ = 20 ms. The total length
of the data is 300 sec and is divided into segments of 100
samples each. Each segment has 50 samples overlapping with
the previous segment. Additional noise resembling the real
brain noise is added to the data. This is done by simulating
independent white noise source distributed evenly across the
entire brain. The noise was scaled such that the power at
10 Hz at the strongest signal channel was equal for noise and
signal of interest.

For the forward solution, calculated using expansions of
the electric lead field [37], we used a realistic head model
based on a segmented head model taken from the program
CURRY. In this simulation, the dimension of the subspace,
that is, P, was chosen to be equal to two.

Figures 1 and 2 are illustrations of the estimated source
locations using the real and imaginary parts of cross-
spectrum. For each voxel, the result of 1/(1 − | cos θ|) is
color coded. The blue circles in the figures represent the
true locations of the simulated sources. Figure 1 shows the
two estimated sources using imaginary part of the cross-
spectrum. In the first RAP-MUSIC step, both of the two
sources are localized simultaneously. In the next step the
first source is projected out and only one of the sources
has remained. Comparing the results in Figure 1 and RAP-
MUISC based on the real part of cross-spectrum in Figure 2
shows that the localization accuracy increases massively
when the imaginary part is used to estimate the sources.
In fact, we can see source location estimations in Figure 2
which do not fit our true locations. These estimations are the
locations where noninteracting sources, noise in this case, are
dominant.

Figure 3 shows the estimation error for two and four
interacting sources, which are located at random positions
inside the head and had random orientations, for 200
independent simulations. We did the simulations with three
different noise levels: (a) no noise, (b) low noise correspond-
ing to equal power of noise and signal of interest at 10 Hz
averaged over all channels, and (c) high noise corresponding
to equal power of noise and signal of interest at 10 Hz at the
channel with largest power of the signal of interest.

On the x-axis the localization error of RAP-MUSIC based
on the imaginary part of cross-spectrum is shown and the
y-axis represents the estimation error resulting from the
real part of cross-spectrum. To identify estimated source
locations with true ones we calculated the mean distance
across all permutations and chose the one which minimized
this mean. The error localizations based on the real part
of the cross-spectrum are considerably larger than for the
imaginary part of cross-spectrum. In fact, by considering the
imaginary part of cross-spectrum, we reduce the effect of
the noninteracting noise sources on the localization of the
interacting sources.

In order to study the connectivity of the sources, we pro-
ceeded the simulations by applying the nulling beamformer
to the EEG data and maximizing the imaginary part of
coherency between the estimated source locations obtained
from RAP-MUSIC and all other grid points. We demonstrate
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Figure 1: Estimated locations of the sources using RAP-MUSIC based on the imaginary part of cross-spectrum. True locations of the sources
are shown as blue dipoles and the estimated locations are shown using the heat map. (a) represents the sources after applying the first iteration
of RAP-MUSIC and (b) shows the source location after projecting out the global maximum of (1) in the previous iteration.
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Figure 2: Estimated locations of the sources using RAP-MUSIC based on the real part of cross-spectrum. True locations of the sources are
shown as blue dipoles and the estimated locations are shown using the heat map. (a) represents the sources after applying the first iteration
of RAP-MUSIC and (b) shows the source location after projecting out the global maximum of (1) in the previous iteration.

a typical outcome for a case consisting of four dipoles, two on
the left and two on the right hemisphere with interactions
within but not across hemispheres and a high noise level
(Figure 4). For illustrative purposes, all dipoles were chosen
to be in one axial plane, and, although the reconstruction
was done in the entire brain, we show only this plane. The
results fulfilled our expectations in the way that the highest
imaginary part of coherency occurred almost at the same
position as the true interacting source positions.

4.2. Real Data. We applied RAP-MUSIC to the real data
measured during the imagined hand movement [38] in order
to localize four interacting sources as well as their interac-
tions. The cross-spectrum has a dominating alpha rhythm
at 10 Hz which is not induced by the task but is considered
to be an ongoing activity present at the eyes-open condition
as well. The data contains central alpha also at 10 Hz due to
event-related synchronization which in this case is induced
by the absence of the foot movement which has been the
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Figure 3: Estimation error in RAP-MUSIC based on the real and imaginary part of the cross-spectrum. (a), (b), and (c) show the simulations
of two interacting sources in 200 independent simulation cases in random locations. (d), (e), and (f) represent four sources containing two
couples of interacting sources simulated in 200 independent simulation cases in random locations. The simulations were done for three
different noise levels as explained in the text and as indicated in the figure.

task in nonanalyzed trials. The number of EEG channels is
equal to 118 and the number of trials to 70 each with the
duration of 3.5 s. The cross-spectrum at 10 Hz is measured
with the frequency resolution of 2 Hz. Channel locations
were matched on a realistic standard head model taken from
the program CURRY (Neuroscan, Hamburg, Germany).

In order to apply RAP-MUSIC based on the imaginary
part of cross-spectrum we set the dimension of the subspace
equal to four. The source localization resulting in Figure 5
shows two sources in occipital lobe representing the alpha
rythm. Two other sources are more close to the motor cortex
which represent the absence of imagined foot movement. To
study the interaction between the sources using beamformers
and maximization of imaginary coherency described in
Section 3, the imaginary part of coherency is maximized
between each reference location found in RAP-MUSIC and
each grid point. According to the results in Figure 6,
the dipoles in each lobe are interacting locally with each
other.

5. Conclusion

We adapted two well-established methods, the RAP-MUSIC
approach and the LCMV beamformer approach, to localize
and characterize interacting brain sources from rhythmic

EEG or MEG data. To study brain interactions robust to
artifacts of volume conduction, it is convenient to analyze
the imaginary part of the cross-spectrum which is unbiased
by noninteracting sources. In contrast to covariance matrices
or complex cross-spectra the imaginary part, being antisym-
metric, is necessarily degenerate: all singular values occur in
pairs, and, for example, a singular value decomposition is not
capable to extract the topographies of the individual sources
in sensor space even if the true topographies are orthogonal.
This is a principle limitation when analyzing interacting
sources where dynamical assumptions like statistical inde-
pendence, as is done for ICA, are inconsistent with the object
which is studied. Rather than individual topographies results
are naturally subspaces, for which subspace methods are
ideal candidates to find the respective sources. In simulations
we have shown that RAP-MUSIC, applied on subspaces
given by imaginary parts of cross-spectra, properly recovers
source locations also in the presence of strong correlated
background noise, which was assumed to be generated by
noninteracting sources.

This was shown for two and four sources, but not for
three. The case of having an odd number of sources differs
substantially from the case of an even number. The rank
of an antisymmetric matrix is always even and we can only
observe in the data an unknown two-dimensional projection
of the three-dimensional subspace spanned by all three
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Figure 4: Four interacting dipoles are simulated. Each two sources in one hemisphere are interacting with each other. In the top figure,
the location of true sources are shown. In the middle row, estimated source locations using RAP-MUSIC based on the imaginary part of
cross-spectrum are demonstrated and in the bottom row the area which is interacting with each of the corresponding sources (visualized as
blue dots) is demonstrated.

(a) (b)

Figure 5: (a) RAP-MUSIC applied to the real data to localize 4 interacting sources. Each panel in (a) represents an iteration in RAP-MUSIC
starting from the top left panel, then top right and so forth (b) The blue dipoles represent the final estimated source locations after all
iterations.
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Figure 6: Localization of the interaction between four sources using the maximization of imaginary part of coherency. The blue dipoles
represent the estimated location of each source which is taken as the reference and the heat map represents the area that is interacting with
the corresponding reference location.

topographies. The presented RAP-MUSIC approach is in
general not capable to localize sources properly in that case.
This problem will be addressed in future work.

To estimate the interaction pattern we adapted the well-
known LCMV beamformer to our needs. In “classical”
beamformer algorithms the orientation for a given dipole
is chosen as the one which maximizes the power in that
brain voxel such that the solution picks the strongest source.
This was replaced by choosing the direction to maximize
the imaginary part of coherency between that voxel and a
given reference. To avoid confounding effects by assigning
interactions to wrong voxels we also chose to use the Nulling
beamformer which sets additional constraints to explicitly
exclude contributions from a given set of topographies. This
set was defined in terms of the pair of voxels of which the
interaction is calculated but a generalization to include other
sources is straight forward.

An important advantage of studying the imaginary part
of cross-spectra to localize interacting brain sources is that
it is applicable without any modification also to differences

of cross-spectra estimated, for example, in two different
measurement conditions. An analogous property for the
characterization of the interaction, that is, the question
which source is interacting with which other, is not possible
within the proposed scheme because coherence loses its
meaning and is eventually even ill-defined when cross-
spectra are normalized with power differences rather than
powers. How to characterize interaction from difference of
cross-spectra only will be addressed in future work.
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