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ABSTRACT 
 

The use of diffusion theory in calculations on photon waves necessitates a new look at boundary conditions, since the stan-
dard boundary conditions have been derived under static conditions.  When the underlying process satisfies the transport 
equation, the proper boundary conditions are obtained by solving the Milne problem.  This paper presents benchmark-quality 
values for extrapolation distances calculated by transport theory, for various values of absorption and three models of the 
phase function—isotropic, linearly anisotropic and Henyey-Greenstein scattering.  The results show that the static boundary 
conditions are perfectly adequate up to photon wave frequencies of 1 GHz or even more.  Specifically, the quantity Σtrd, 
where Σ′tr = Σtr - ik, where Σtr is the macroscopic transport cross section and k the wave number in the medium and d the 
linear extrapolation distance, is essentially independent of frequency over this range.  We have also examined the ratio of the 
diffusion length as given by transport theory to that given by diffusion theory itself.  This is extremely insensitive to fre-
quency, but for substantial absorption, using the diffusion theory result can lead to substantial errors in thick media, espe-
cially for Henyey-Greenstein scattering. 
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1. INTRODUCTION 
 
 In recent years there has been an ever-increasing amount of work, employing photon waves, on imaging abnormali-
ties in tissue,1-7 using both simulation and experiment.  The corresponding mathematical analysis required for image recon-
struction usually uses diffusion theory. 

  In a recent paper8 I discussed the problem of the proper diffusion boundary conditions for calculations of diffusion 
of light, both at interfaces and at external boundaries.  These, and so far as I know, all previous calculations of boundary 
conditions7 have been done for time-independent situations.  The question posed and answered here is how the static bound-
ary conditions must be modified to take account of photon waves.  Secondarily, this paper discusses the error in the usual 
diffusion length formula for the diffusion length in terms of the diffusion coefficient and the absorption cross section. 

 For any given problem the diffusion solution involves two constants, since the diffusion equation is a second-order 
differential equation.  One constant can be thought of as a scale parameter, determined by the magnitude of the source.  The 
second is a shape parameter, giving the form of the solution.  This parameter is generally determined by either the extrapo-
lated end point z0 or the linear extrapolation distance d.  Simply put, the extrapolated end point is the distance outside the 
physical boundary at which the asymptotic intensity curve extrapolates to zero.  The extrapolation distance is the distance 
outside the physical boundary at which a linear extrapolation with the slope given by that at the boundary vanishes.  These 
two quantities are related to each other; each can be computed from the other.  In the absence of reflection or absorption, the 
asymptotic intensity curve is linear, and z0 = d.  Contrary to many statements in the literature, in any problem for a thick 
medium for which mixed (Type III) boundary conditions can be used successfully for diffusion calculations, Dirichlet (Type 
I) conditions can be used as well, so long as the extrapolated end point is real, and they give the same answers.  Which one 
uses is a matter of convenience, not of necessity.  

 It is assumed here that the underlying process is governed by the transport equation, which assumes well-defined 
collisions with free travel for the photons in between.  This condition is certainly not satisfied in tissue.  Nevertheless, it is 
generally accepted by people working in the field that the independent collision picture described by transport theory is at 
least basically correct.  Certainly the success people have had in imaging using that model gives some support to assuming 
that it is basically valid.  In any case, there is no accepted rationale for determining the boundary conditions otherwise.  
Transport theory says that the appropriate constants to use are those given by the Milne problem.   



 Reference 6 gives values for the extrapolated end point and/or the extrapolation distance for various values of the 
index of refraction obtained by an exact (that is, converged) transport solution of the Milne problem, taking into account 
Fresnel reflection at the boundary.  The present work extends these results to photon waves.  From a technical point of 
view, this merely requires solving the Milne problem with reflective boundary conditions using complex rather than real 
arithmetic, and the resulting values of d and z0 are complex. 

 
2.  ANALYSIS 

 
 The time-dependent diffusion equation in a uniform medium is 
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Here I(r,t) is the intensity at position vector r and time t, S(r,t) is the source strength at r and t, D is the diffusion coefficient, 
Σa the macroscopic absorption cross section and v the speed of light in the medium.  For a density wave of angular frequency 
ω, one can write 
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Inserting this into the diffusion equation gives 
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where 
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Here k is the wave number in the medium: 
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where f is the modulation frequency, c0 is the speed of light in vacuum and n is the index of refraction. 

 The time-dependent transport equation is 
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HereΩ  is a unit vector in the direction of motion of the photon, Σˆ
t is the total macroscopic cross section and Σ Ω  is 

the macroscopic differential scattering cross section from direction to direction .  For a photon wave, 
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Putting this into the transport equation gives the time-independent equation 
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where 
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Since the scattering cross section doesn’t change, the effect is to make absorption cross section complex, just as in diffusion.  
Note that in a similar way one can define a complex macroscopic transport cross section Σ′tr in terms of the ordinary trans-
port cross section Σtr: 

tr tr ik′Σ =Σ − .                                                                             (10) 



 It follows that the calculation is identical with the static calculation, except that the analysis and arithmetic are com-
plex, and obviously the results as well.  The only fine point from a technical point of view is in deciding which mode corre-
sponds to diffusion.  In the double-PN angular expansion used here, the solution is a sum of spatial exponentials.  One looks 
for the most slowly attenuating mode.  In the usual time-independent calculation, the diffusion mode is the one with the larg-
est (real, in that case) reciprocal attenuation constant, which corresponds to the diffusion length.  Here, the reciprocal diffu-
sion length is identified with the attenuation constant with the smallest real part. 

 One relevant parameter is the ratio of k to Σt (or, alternatively, the ratio of Σ′a to Σt), just as in the static case it is the 
ratio of Σa to Σt.  Physically, this is 2π times the number of wavelengths in one mean free path.  If this number is not small, 
the fundamental assumption for the validity of diffusion theory, that the variation in the intensity over a mean free path is 
small, is violated.  In that case, diffusion theory is not valid, and the determination of the correct boundary conditions is then 
beside the point.  For a typical index of refraction of 1.4 for tissue, a frequency of 1 GHz and a mean free path of 1 mm, this 
ratio is 
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 If the dominant dependence on frequency is given entirely by this ratio, one can conclude that for any practical 
frequency the effect is negligible.  If fact, this turns out to be the case, but it was not evident a priori that the ratio k/Σa was 
not also involved. 

 The most common way of showing the result is to give the extrapolated end point.  This has the advantage that the 
combination Σtrz0 (the extrapolated end point in units of the transport mean free path) is extraordinarily insensitive to absorp-
tion, if the absorption is small, to the details of the phase function, and even to curvature of the surface.  But the presence of 
index mismatch makes it less suitable for photon transport.  The Fresnel reflection cuts down the flux leakage from the sur-
face, making the intensity curve flatter and increasing z0.  It increases quite rapidly with increasing index, and if the reflec-
tion is great enough, the extrapolated intensity curve never does vanish, and the extrapolated end point becomes complex, 
even at zero frequency.  The extrapolation distance is always real at zero frequency and even at nonzero frequency its imagi-
nary part remains much smaller than that of z0.  In addition, it varies less with the index of refraction, so d becomes easier to 
work with than z0. 
 

3.  RESULTS 
  

Tables 1-4 give results for Σ′trd, the linear extrapolation distance expressed in units of the complex transport cross 
section, for frequencies up to 1 GHz, which is in the range in which experiments in diffusion tomography are beginning to be 
done,9 and for a transport mean free path of 1 mm.  (All the results hold for values of the transport mean free path other than 
1 mm so long as the ratio k/Σtr is held constant.  Note that because of the dependence of k on the index of refraction, this is 
not quite the same as keeping the ratio f/Σtr constant.)  The results are presented in this way because even though d itself 
depends only very weakly on frequency, the tabulated results depend on frequency even more weakly.  The tables are classi-
fied by the single-scattering albedo c = Σs/Σt and give results for isotropic, linearly anisotropic and Henyey-Greenstein phase 
functions, the latter two for average cosine g of the scattering angle.  Observe that a fixed transport mean free path means 
that the total mean free path for anisotropic scattering is different from that for isotropic scattering and depends on g.  The 
results are given for index for refraction n = 1.0, 1.4 (reasonable for tissue) and 2.0, the last to show the effect for a large 
index.  Table 1 is for c = 1.0, g = 0.9; Table 2 for c = 1.0, g = 0.6; Table 3 for c = 0.9, g = 0.9; and Table 4 for c = 0.9, 
g = 0.6.  That is, the absorption ranges up to 10 per cent and the results cover a large range of anisotropy. 

 The transport calculations were done in a double- PN representation by the Transfer Matrix method.10-12  The results 
presented are exact to the accuracy shown, and were obtained for N = 20 (a 42-stream calculation), but almost all the results 
even for N=5 agreed with these except for a few that differed by a unit or two in the last place.  The computation on a 166-
MHz Pentium computer took approximately 0.1 seconds per problem. 

 The conclusion from the data shown is that the real part of the extrapolation distance is sensibly independent of 
frequency over the range shown.  The imaginary part is linear in frequency and small, less than about 0.02 over the entire 
range covered, for an index of 1.4.  The fact that the imaginary part of Σ′trd is considerably larger for isotropic scattering than 
for the anisotropic scattering with a large value of g is a result of scaling and was to be expected.  For a given value of Σtr, 
the total cross section is much smaller for isotropic scattering, and the ratio k/Σt is correspondingly larger.  For c = 1.0, 
g = 0.9, it is larger by a factor of ten. 



 These results actually hold quite well for isotropic and linear scattering up to about 5 GHz and even beyond.  For 
Henyey-Greenstein scattering, the imaginary part of Σ′trd remains quite linear up to about 5 GHz, but the real part starts to 
drop somewhat after about 3 GHz.  For instance, for c = 1.0, g = 0.9, Σ′trd = 1.871 + 0.085i at 3 GHz and 1.855 + 0.139i at 5 
GHz, as compared to the zero-frequency result Σ′trd = 1.880. 

 
4. TRANSPORT CORRECTIONS TO DIFFUSION LENGTH 

  

 The inverse attenuation length of the asymptotic mode is given by exact transport theory as  0 3 tr a= Σ Σκ  at zero 

frequency to lowest order in the absorption cross section, and is here generalized to 0 3 tr a′ ′= Σ Σκ .  This mode satisfies a 
diffusion equation and is identified with the diffusion solution.  This result is also given by the P1- approximation to the 
transport equation, which gives a diffusion equation.  It is also consistent with the diffusion theory result /diff a D′= Σκ , 
with the diffusion coefficient given by D = 1/3Σ′tr.  As c moves away from 1.0 and k from 0, the transport theory result dif-
fers more and more from this expression.  In effect transport theory says to modify the expression for the diffusion length 
(and therefore for the diffusion coefficient) if absorption is substantial.  The result depends only on the scattering and absorp-
tion properties of the medium, and is independent of any index mismatch. 

Consider the ratio of the inverse diffusion length as given by transport theory to the limiting form above.  The real 
part of this ratio is again essentially independent of frequency and the imaginary part is linear, with a value of 0.006 or less at 
1 GHz for all the cases examined.  Thus let us consider the real part alone.  This is unity when c = 1 (no absorption).  Table 5 
gives the result for c = 0.9 and g = 0.9, 0.8 and 0.6.  The limiting form given above is quite good, but the ratio, while small, 
appears in an exponent and can be very important in thick media.  

The numerical results are interesting.  The ratio is 1.042 for isotropic scattering, and it is scarcely different for linear 
anisotropy, independent of g in both cases.  The ratio for Henyey-Greenstein scattering is considerably larger, and depends 
strongly on g.  The numerical results for isotropic scattering agree with the expansion given in the classic work of Case, de 
Hoffmann and Placzek13: 
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Our ratio is the reciprocal of this.  These results hold also in the frequency-dependent case, where the quantity (1 - c) be-
comes (Σa - ik)/(Σt - ik).  Similar expansions have not been computed for anisotropic scattering.  

 
 

5. SUMMARY 
 

In summary: 

1. The linear extrapolation distance d, though not necessarily the extrapolated end point z0, is sensibly independent of fre-
quency for frequencies up to several hundred MHz.  The quantity Σ′trd is even more insensitive to frequency.  The small 
frequency dependence of the imaginary part is linear up to about 3 GHz at least. 

2. The diffusion length as computed from the diffusion formula is somewhat in error when Σ′a ≠ 0.  This error is only a few 
per cent for isotropic and linearly anisotropic scattering, but is quite a bit larger for a Henyey-Greenstein phase function.  
In any case, since it appears in an exponent multiplying a large number in thick media, it is a cause for some concern. 
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Table 1. Σ′trd for c = 1.0, g = 0.9, Σtr = 10 cm-1 

 
Index  Freq     Isotropic       Linear        H-G 
 1.00    0    .710 +.000i    .710 +.000i    .714 +.000i 
  200    .710 -.004i    .710 +.000i    .714 -.001i 
  600    .710 -.013i    .710 -.001i    .714 -.002i 
 1000    .710 -.022i    .710 -.002i    .714 -.004i 
 1.40    0   1.860 +.000i   1.860 +.000i   1.880 +.000i 
  200   1.860 +.004i   1.860 +.000i   1.880 +.004i 
  600   1.860 +.012i   1.860 +.000i   1.879 +.012i 
 1000   1.860 +.020i   1.860 +.001i   1.879 +.020i 
 2.00    0   5.252 +.000i   5.252 +.000i   5.290 +.000i 
  200   5.252 +.028i   5.252 +.002i   5.290 +.020i 
  600   5.252 +.084i   5.252 +.007i   5.289 +.059i 
 1000   5.252 +.139i   5.252 +.011i   5.287 +.099i 

 
 

Table 2. Σ′trd for c = 1.0, g = 0.6, Σtr = 10 cm-1 
 
Index  Freq     Isotropic       Linear          H-G 
 1.00    0    .710 +.000i    .710 +.000i    .712 +.000i 
  200    .710 -.004i    .710 -.002i    .712 -.002i 
  600    .710 -.013i    .710 -.005i    .712 -.006i 
 1000    .710 -.022i    .710 -.008i    .713 -.009i 
 1.40    0   1.860 +.000i   1.860 +.000i   1.871 +.000i 
  200   1.860 +.004i   1.860 +.001i   1.871 +.003i 
  600   1.860 +.012i   1.860 +.003i   1.871 +.010i 
 1000   1.860 +.020i   1.860 +.005i   1.871 +.016i 
 2.00    0   5.252 +.000i   5.252 +.000i   5.275 +.000i 
  200   5.252 +.028i   5.252 +.010i   5.275 +.019i 
  600   5.252 +.084i   5.252 +.029i   5.274 +.058i 
 1000   5.252 +.139i   5.251 +.049i   5.272 +.097i 

 
 

Table 3. Σ′trd for c = 0.9, g = 0.9, Σtr = 10 cm-1 
 
Index  Freq     Isotropic       Linear        H-G 
 1.00    0    .747 +.000i    .730 +.000i    .783 +.000i 
  200    .747 -.005i    .730 -.001i    .783 -.001i 
  600    .747 -.014i    .730 -.002i    .783 -.003i 
 1000    .747 -.023i    .730 -.003i    .783 -.005i 
 1.40    0   1.628 +.000i   1.686 +.000i   1.312 +.000i 
  200   1.628 +.002i   1.686 +.000i   1.312 +.001i 
  600   1.628 +.007i   1.686 +.000i   1.312 +.003i 
 1000   1.628 +.012i   1.686 +.000i   1.312 +.006i 
 2.00    0   4.267 +.000i   4.466 +.000i   3.006 +.000i 
  200   4.267 +.022i   4.466 +.002i   3.006 +.006i 
  600   4.267 +.067i   4.466 +.007i   3.006 +.018i 
 1000   4.267 +.111i   4.466 +.012i   3.006 +.029i 

 
 
 



Table 4. Σ′trd for c = 0.9, g = 0.6, Σtr = 10 cm-1 
 
Index  Freq     Isotropic       Linear          H-G 
 1.00    0    .747 +.000i    .735 +.000i    .749 +.000i 
  200    .747 -.005i    .735 -.002i    .749 -.002i 
  600    .747 -.014i    .735 -.005i    .749 -.006i 
 1000    .747 -.023i    .735 -.009i    .749 -.010i 
 1.40    0   1.628 +.000i   1.668 +.000i   1.586 +.000i 
  200   1.628 +.002i   1.668 +.000i   1.586 +.002i 
  600   1.628 +.007i   1.668 +.001i   1.586 +.005i 
 1000   1.628 +.012i   1.667 +.002i    1.586 +.008i 
 2.00    0   4.267 +.000i   4.406 +.000i   4.065 +.000i 
  200   4.267 +.022i   4.406 +.007i   4.064 +.011i 
  600   4.267 +.067i   4.405 +.021i   4.064 +.033i 
 1000   4.267 +.111i   4.405 +.035i   4.063 +.055i 

 
 

Table 5.  Ratio of Asymptotic Attenuation Length to Diffusion Value 
 

g Isotropic Linear H-G 
0.6 1.042 1.041 1.061 
0.8 1.042 1.040 1.098 
0.9 1.042 1.040 1.157 

 


