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ABSTRACT

Diffusion theory has been a useful and frequently applied analytical method to study the transport of light
in random media. The diffusion equation requires unphysical boundary conditions. This is reflected in the
fact that the diffusion solution must differ from the exact solution in a boundary region a few mean free
paths thick. Exact transport theory indicates that for particle diffusion the true boundary is to be replaced
by an extrapolated boundary 0.71 transport mean free paths outside of it. This is the number that has
universally been used in treating light diffusion, although it is sometimes neglected because it is often a
very short distance. However, because there is reflection at the boundary due to a mismatch in the index
of refraction, the extrapolation distance for diffusion of light is longer than that for particles, and this must
be taken into account. The correction is large, even for modest indices of refraction. We show here that the
appropriate boundary condition is given in terms of an extrapolation distance and tabulate this quantity as
a function of relative scattering probability and index of refraction of the medium.

1 INTRODUCTION

Modeling the transport of light in random media by a diffusion approximation has long been a useful tool for
analysis. Diffusion of light requires different boundary conditions from diffusion of particles because of the reflection
that occurs at a change in the index of refraction. We have recently given results for the appropriate conditions at
interfaces between two regions®.

It is well known that the diffusion equation requires nonphysical exterior boundary conditions for its solution. It is
obvious that physically the particle distribution is completely determined by the sources interior to the medium and
the incident surface distribution. On the other hand, the diffusion equation is an equation for the intensity, which at
a boundary requires a knowledge not only of the incident distribution but of the exit distribution as well. Physically
this is part of the output, not of the input. In contrast, the exact transport equation requires the physically correct
boundary conditions. The problem arises from the fact that diffusion is valid deep in the interior of the medium but
not within a boundary region of the order of two or three transport mean free paths. This difficulty is not unique to
transport problems. It occurs in a number of fields. For instance, the usual hydrodynamic equations are unsuitable for
calculating fluid flow in boundary regions, and a solution of equations valid in the boundary region must be used to
determine the appropriate boundary conditions to use for calculations in the bulk.

Which of the infinite number of solutions of the diffusion equation is obtained depends on the boundary conditions
chosen. The usual condition used to obtain the correct diffusion solution, 2.¢., the solution that becomes identical with
that for the exact transport equation in the asymptotic region (that is, deep in the interior of the medium), is that the
diffusion solution vanish at a certain distance outside the physical boundary. This distance is known as the extrapolated
end point?. This is generally computed at a free boundary, i.e., one with nothing incident on it. That is the usual
situation considered for light, in which the proximate source of the diffusing light is not the incident light, which is by
no means random, but a distribution of scattered light in the interior. The asymptotic intensity satisfies the diffusion
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equation, and i is the solution sought from diffusion theory. It should be stressed that this solution is not valid in
the boundary region. Figure 1 shows schematically the total intensity and the asymptotic (diffusion) intensity near a
plane surface. The extrapolated end point zj is the distance from the boundary at which the extrapolated asymptotic
intensity curve vanishes; the extrapolation distance d is the distance at which the curve extrapolated linearly from the
boundary vanishes. When there is no reflection and no absorption in the medium, the asymptotic intensity curve is
linear, and the two are the same. In the case shown in Figure 1, 2o > d.

The commonly used extrapolated end point given by transport theory for particles is 0.71 transport mean free
paths. This is calculated for a plane boundary from the solution of the Milne problem (sources in the deep interior) for
a nonabsorbing medium with isotropic scattering. It is useful because the quantity czo, where ¢ is the probability the
particle surviving a single collision, is exceedingly close to 0.71 transport mean free paths over quite a wide range of
absorption?, differential cross section? and curvature of the boundary surface.

Diffusion of light is different than that for particles in just one significant aspect. Particles do not recognize
boundaries. They merely experience different conditions on one side of a boundary than they do on the other. On the
other hand, light is subject to reflection and refraction at boundaries. Since we are here interested in the effect of an
exterior boundary on what goes on within the medium, the refraction is not of concern in this work. The reflection is
important, however.

Reflection occurs in other similar transport problems as well, such as for nuclear reactors, in which the core is
generally surrounded by a reflection region to inhibit neutron leakage®. In that case, however, the reflector is a
physically separate region, so that a two-region diffusion calculation can be done. Here it is merely a boundary with
no width. To see the effect of reflection at the exterior boundary, consider the case of total specular reflection. (The
reflection of light at a vacuum boundary is specular, though not total.) Every photon reflected from the mirror is the
continuation of the path of the mirror image of the incident photon. That is, one can think equally well of the real world
with reflection at the mirror or of the real and mirror worlds together, with particles from the mirror world approaching
the mirror and going straight through it, while the incident particles from the real world sail right through the mirror,
their continuations being the mirror images of the actual particles being reflected from the mirror.

The asymptotic intensity is certainly continuous, and since it is even with respect to the mirror surface (z = 0),
its slope must vanish there. Thus the extrapolation distance is infinite. In the absence of absorption, the asymptotic
intensity is linear in z, so that the curve is flat and the extrapolated end point is also infinite. When absorption is
present, the extrapolated curve never does reach zero (because it is the mirror image of the real intensity curve, which
is everywhere positive), so the extrapolated end point does not exist.

In general, the slope at the boundary decreases with increasing reflection, and thus with increasing index of refraction.
The situation with substantial reflection is shown schematically in Figure 2. In contrast to the case in Figure 1, the
asymptotic intensity curve never goes to zero, but reaches a minimun and starts increasing with increasing distance
from the boundary. Somewhere between the two cases, zq increases to infinity and then becomes meaningless, while d
increases with increasing reflection but does not become infinite except in the case of perfect reflection.

2 ANALYSIS

The extrapolated end point is defined as the distance from a vacuum boundary at which the asymptotic part of the
solution of the Milne problem vanishes. This is the problem for a half-space > 0 with a source infinitely far into the
interior. Mathematically, z; is defined in plane geometry by the condition

I**(=z0) = 0, (1)

where 7%*(z) is the asymptotic intensity at a distance z into the medium. It can be seen that the definition of d in the
previous section is equivalent to

d= T T 0); (2)
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where the prime indicates a derivative with respect to z.
The asymptotic intensity for the Milne problem in a half-space can be shown to be of the form?
IGS(x) = eJt.r 4 AE—AI, (3)

where A is a constant determined by solving the transport equation. It depends on the properties of the medium and
on the reflection at the free surface. This is clearly a solution of the time-independent diffusion equation

fH—AEf:O, (4)

so A has to be identified with the reciprocal of the diffusion length. From the definitions we see that

2 = —(1/20)In(-A) (5)
1A+1
d XI=a (6)

Since these are just two alternative ways of representing the value of the parameter A that determines the asymptotic
intensity, which of these quantities one uses is purely a matter of convenience. Note, however, that z; is not real when
A > 0, while d is well-defined for all A < 1. A = 1 corresponds to perfect reflection, and A decreases with decreasing
reflection. Positive values of A correspond to the absence of an extrapolated boundary. It follows that in the presence
of reflection, it is appropriate to characterize the boundary conditions by prescribing d rather than zo.

We have solved the problem using the Transfer Matrix method® in a double-Py approximation?. Qur A is the Fy,
of Reference 5 and our A is Ag in that paper. It is shown there that A is obtained as the smallest positive eigenvalue of
a certain matric involving only the properties of the medium and the order N of the approximation. A is the matrix
element of a matrix F both of whose indices correspond to the mode associated with A. This matrix can be written

F =—(B4 -RB_)"}(B_ —RB,), (7)

where the matrices By and B_ are associated with the eigenvectors of the eigenvalue equation and R is the reflection
matrix for the boundary.

In the particle case a vacuum boundary is nonreentrant. That is, any particle incident on the boundary escapes and
is lost. In that case, R=0. For light, there is Fresnel reflection at the boundary. In the spirit of diffusion theory, which
implies randomness in polarization as well as direction of the light, we must assume unpolarized light incident on the
boundary. To describe the reflection, let

u' = cosine of angle of incidence
u = cosine of angle of reflection
Ho = cosine of angle of refraction into vacuum
ft. = cosine of critical angle
n = index of refraction.
Snell’s Law gives
ps =1—n?+n?y? (8)
The reflection coefficient can be written
R(p, ') = r(p)b(p — '), (9)
where the Dirac delta-function is the mathematical representation of the fact that the reflection is specular and®
rp) = 1[(@)2}(@)2}, n> pe (10)
2 |\ g+ npo fo + np
= 1, B < pe. (11)
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The quantity r(u) gives the reflection probability for a photon incident on the boundary at an angle cos™! p.
In the double- Py approximation, the elements of the matrix R are given for 0 < i,j < N by
1
Ry = @i+1) [ r(u)Di(u)Ds () d (12)
0
= 6,'3; — (214 l)s,-j, (13)
where :
sip = [ 11— r()Di0) Dy 1) d (14)

e

In these equations 4;; is the Kronecker delta and the D;(u) are the half-range Legendre Polynomials:
Di(p) = Pi(2p = 1). (15)

It follows that D;(u)D;(p) is a polynomial in y, so the integrals are sums of terms of the form

1
Je= [ 1= ik du. (16)

One way of proceeding is to use the substitution ¢ = (np — pg)/v/n* — 1, which gives

k41 9
1=kt 1 (VR2 -1 ! [ -9\ | QA+ (1 -1¢?)
s =y _5( 2n ) /p t+(1—9t2) th+? . )
where
p = Vn2-1(t*+1)/(2nt), (18)
g (n* = 1)/(n® +1) (19)
= V(n=1)/(n+1). (20)

The integrand in Eq. (17) is a rational function of ¢ so the integral can be evaluated exactly. The resulting expressions
are extremely cumbersome, so we used this approach only as a check. For the primary calculations, the integration
variable was taken to be £ = 2u — 1. This gives

. 1 1 3 A
s =/ [ |G * G DA b =2

Here po = (14 z)/2 and, from Eq. (8), = \/n? — 1 + pé/n.

We evaluated s;o for 0 < i < 2N by a 96-point Gaussian quadrature. One expects this to give good results for N
less than about 48. In fact, we used N = 30 and could find no difference for selected R;q between the results of exact
and Gaussian integration. The integrals were also checked by using as the integration variable y = (2t — 1 — p)/(1 — p),
where ¢ and p are the quantities defined above. The integrals in s;o were transformed to integrals over y from -1 to 1
and a 96-point Gaussian integration applied to these. Since this is an inherently different integration scheme from the
integration over z, the results serve as a check on the Gaussian approximation. Again they were found to be accurate.

The s;; for 0 < j < i < 2N — j were calculated from the recursion relation

1 (25 +1
j+112i+1

Sij+1 = (i + )sig1,; +isio1,j] — jsi.j—l} ; (22)

which follows from the recursion relation for the Legendre Polynomials. Because of the symmetry of s;;, this gives all
the s;; for 0 < i,j < N, and therefore all the required R;;.
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3 RESULTS

The actual calculations were carried out for N = 30. In fact, convergence was excellent even for N = 5, for which zg
was computed correctly to four decimal places. The program was constructed to handle anisotropic as well as isotropic
scattering, but all the results presented here are for isotropic scattering.

Table 1 gives values of czy as a function of index of refraction for various scattering probabilities ¢ between 1.00 and
0.90. All distances are in units of the mean free path. For n > 2.1, z; doesn’t exist for ¢ < 0.99. For ¢ = 1, the results
are identical to those in the first column of Table 2. The results in Table 1 are shown graphically in Figure 3 for c = 1
and in Figure 4 for ¢ < 1. The values of cz; are seen to rise remarkable rapidly with n, the more so as the absorption
increases. For instance, for no absorption and n = 1.5, ezy is more than triple the value of 0.71 for n = 1. For 5 per
cent absorption, it is more than four times as large. The rapid growth of z; when the index of refraction approaches
the critical index at which z; becomes infinite is quite striking in Figure 4.

The extrapolation distance d, by contrast, is well-behaved for all values of the index of refraction. Table 2 and
Figure 5 give d as a function of n for various values of ¢. It can be clearly seen that this is much better behaved as a
function of n than is ezg. Like zg, d increases rapidly with n.

4 CONCLUSIONS

We have given here boundary conditions at an exterior boundary that should be used to describe the diffusion of light.
A description in terms of the extrapolation distance d is more suitable than one in terms of the extrapolated end point
2y because d is finite for all finite n. The effect of reflection is to increase these quantities greatly. The error in neglecting
extrapolation is therefore much greater than for particles. If one wishes to neglect the effect in a particular application,
it is necessary to justify the neglect. If extrapolation is taken into account, it is not appropriate to use the extrapolation
distance of 0.71 transport mean free paths used for particles. Rather, the data given here should be used.
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Table 1. Extrapolated End Point Times ¢

n | 1.00 099 098 097 096 0.94 092 0.90
1.0(071 071 071 0.71 071 0.71 0.71 0.71
1.1 1088 088 088 087 087 0.86 0.86 0.85
12115 114 1.14 1.13 1.13 1.12 1.11 1.10
1.3 147 148 148 148 148 148 1.48 1.48
14(18 188 190 1.93 196 2.02 209 219
1.5 230 237 244 254 265 3.00 3.84
1.6 | 279 295 3.16 346 397 — =
1.7 332 366 421 552 — — .
1.8 | 3.92 458 632 — e e =
1.9 | 456 587 — — = S —
2.0 |52 811 — - e = =

Table 2. Extrapolation Distance

n 1.00 099 098 097 096 094 092 0.90
1.0 071 o071 072 072 072 073 074 075
1.1 0.8 088 088 0.88 0.88 0.88 0.88 0.88
12| 115 114 113 112 1.12 1.10 1.09 1.08
1.3 | 147 146 144 143 141 139 136 1.33
14| 186 184 181 1.79 176 1.72 1.67 1.63
15| 230 226 223 219 216 209 203 1.97
1.6 | 279 274 269 265 260 252 243 235
1.7 332 327 321 315 3.09 298 287 277
1.8 392 384 377 370 3.63 349 336 3.23
1.9 | 456 447 438 430 421 4.05 389 3.73
20| 525 5.15 505 495 485 4.65 446 4.27
21| 600 588 576 564 553 530 507 4.85
22| 681 667 653 639 626 599 573 548
23| 767 751 735 720 7.04 6.74 644 6.15
24| 859 841 823 805 788 753 T7.19 6.86
25| 957 936 916 896 877 838 B8.00 7.62
2.6 | 1061 10.38 10.16 9.93 971 9.28 8.85 8.43
271171 1146 11.21 1096 10.71 10.23 9.75  9.29
2.8 | 12.88 12.60 1232 12.06 11.78 11.24 10.71 10.19
29| 14.11 13.81 13.50 13.20 12.90 1230 11.72 11.15
3.0 | 1542 15.08 14.74 14.41 14.08 13.43 12.79 12.16
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Figure 1. Intensity, No Reflection
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Fig. 3. Extrapolated End Point, No Absorption
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Fig. 4. Extrapolated End Point for Various ¢
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Fig. 5. Extrapolation Distance
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