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Photon diffusion coefficient in an absorbing
medium
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A number of investigators have recently claimed, based on both analysis from transport theory and transport-
theory-based Monte Carlo calculations, that the diffusion coefficient for photon migration should be taken to be
independent of absorption. We show that these analyses are flawed and that the correct way of extracting
diffusion theory from transport theory gives an absorption-dependent diffusion coefficient. Experiments by
two different sets of investigators give conflicting results concerning whether the diffusion coefficient depends
on absorption. The discrepancy between theory and the earlier set of experiments poses an interesting chal-
lenge. © 1999 Optical Society of America [S0740-3232(99)02205-X]
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1. INTRODUCTION
In the past few years there has been much interest in
photon migration in tissue.1–3 It has been generally ac-
cepted that transport theory serves as a good model for
this migration. In practice, however, the extreme optical
thickness and complexity of body organs have led investi-
gators to use diffusion theory, which is generally more
computationally tractable. The diffusion equation in-
volves two medium-dependent parameters, the diffusion
coefficient D and the absorption coefficient ma , and it is
important that these be chosen correctly.

Recent experiments by Bassani et al.4 give results that
can be understood nicely in terms of a simple version of
diffusion theory, in which the diffusion coefficient is taken
to be independent of absorption. This result would ap-
pear to be satisfying because several authors, proceeding
from a mathematical analysis of the transport equation,
have claimed to derive that independence.5–8 It is our
purpose here to show that those analyses are flawed and
that a proper derivation of diffusion theory from trans-
port theory predicts a dependence of the diffusion coeffi-
cient on absorption. Thus these experiments, rather
than supporting a simple theory, indicate a discrepancy
that requires explanation. (By contrast, very recently,
after the submission of this paper, experimental results
have been published by Rinzema et al.9 that support our
conclusions. See Note added in proof below, just preced-
ing the References. This is the later set of experiments
referred to in the abstract.)

The reasoning by which these papers arrive at their
conclusion is threefold:

1. Experimental: This is the result of varying the ab-
sorption in various media, measuring the intensity over
some range, and fitting the result to the best diffusion
coefficient.4
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2. Analytical: This is what transport theory gives
when looked at correctly.5–7

3. Numerical: This is what time-dependent Monte
Carlo calculations give.4,7,8

By contrast, we assert that

1. Transport theory says that the diffusion coefficient
does depend on the absorption.

2. It is the time-independent rather than the time-
dependent equation that should be examined to obtain
the diffusion coefficient.

3. Monte Carlo calculations (especially time-
dependent Monte Carlo) are both overkill and underkill.
They give, with substantial error and with the expendi-
ture of considerable computer time and effort, results that
can be computed exactly to a large number of significant
figures in small fractions of a second on any reasonable
desktop computer.

We have calculated D by transport theory for a number
of different absorption strengths and phase functions, and
we find apparent disagreement with the experimental re-
sults of Bassani et al.4 We discuss below some possible
reasons for the discrepancies, but in the end we are not
able to resolve them.

2. ANALYSIS
The transport equation is a continuity equation that en-
forces a particle balance in each element of volume and
solid angle (and time, for the time-dependent version). It
assumes that the collisions are or can be approximated by
point collisions in both space and time. When applied to
light, it assumes also that a photon picture is valid, i.e.,
that the light is incoherent. The time-independent and
time-dependent transport equations for a homogeneous
1999 Optical Society of America
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medium in which the only processes allowed are elastic
scattering and absorption (well justified in our context)
are given, respectively, by
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Here r is the position variable, V̂ a unit vector in the di-
rection of particle motion, and t the time. The medium-
dependent parameters are the total attenuation coeffi-
cient m t ; the scattering coefficient ms ; the phase function
p(V̂ • V̂8) for scattering from direction V̂8 to direction V̂,
normalized so that its integral over all solid angle is
unity; and the speed c of light in the medium. I(r, V̂, t)
is the angular intensity at r, V̂, and t per unit solid angle;
and S(r, V̂, t) is the source strength at r, V̂, and t per
unit volume, time, and solid angle. Equation (1) is just a
steady-state version of Eq. (2). The absorption coefficient
is given by ma 5 m t 2 ms .

For future reference, we note the spherical harmonic
expansion of the phase function:

p~x ! 5 (
l50

L
2l 1 1

4p
flPl~x !, (3)

where the sum may be cut off at some finite value l
5 L. The normalization is such that f0 5 1. The quan-
tity f1 , which is the average value of the cosine of the
scattering angle, is sometimes called the anisotropy pa-
rameter and given the alternate symbol g. For Henyey–
Greenstein scattering, fl 5 g l.

The solution of the transport equation is controlled by
the system parameters defined above, the source
strength, the boundary conditions, and, for the time-
dependent problem, the distribution of particles at t
5 0. A typical diffusion equation may be regarded as an
approximation to the transport equation. One may de-
rive different diffusion equations from Eq. (1) or Eq. (2)
with different approaches. In general the key diffusion
parameter D is a functional of ms , ma , and the partial-
wave expansion coefficients fl .

A. P1 Analysis
The analysis in Refs. 5–8 goes from Eq. (2) to diffusion
theory by means of the so-called P1 approximation, in
which the transport equation is expanded in spherical
harmonics and only the l 5 0 and l 5 1 (isotropic and
linearly anisotropic) terms are retained in the angular ex-
pansion of the intensity. In addition, one neglects any
anisotropy in the source. The result is the pair of
coupled equations
1
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Here f(r, t) is the intensity and J(r, t) the flux at (r, t),
and m tr is the transport cross section, defined by

m tr 5 ~1 2 g !ms 1 ma [ ms8 1 ma , (6)

where ms8 is sometimes called the reduced scattering co-
efficient.

Equation (4) is just a continuity equation, as is the
transport equation, and it is exact. The telegrapher’s
equation is obtained by eliminating J between these two
equations. The diffusion equation results from first
dropping the time-derivative term in Eq. (5). The result-
ing relation is Fick’s law, which when inserted into Eq. (4)
to eliminate J produces the diffusion equation

1
c

]
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where D is given by

D 5 1/3m tr . (8)

For a given set of boundary conditions and initial dis-
tribution, the solutions of both the source-free version of
the time-dependent transport equation, Eq. (2), and the
P1 approximation to it, Eqs. (4) and (5), depend on ma ac-
cording to the relation

f ~ma! 5 f ~ma 5 0 ! exp~2mact !. (9)

Furutsu and Yamada5,6 and Durduran et al. in their
earlier paper7 assert that for a pulse source, Eq. (9)
should hold for the solution of the time-dependent diffu-
sion equation as well. Inspection of Eq. (7) shows imme-
diately that this is equivalent to requiring that D be in-
dependent of ma . From this they conclude that one
should use Eq. (8) for the case in which m tr is given its
value for ma 5 0; i.e.,

D 5 1/3ms8 . (10)

This is an erroneous conclusion, on two grounds.
First, Eq. (9) does not survive the transition to the diffu-
sion equation at all. Neglecting the time-derivative term
in Eq. (5) destroys Eq. (9); the ma part of m tr in Eq. (5) can
no longer be removed by applying Eq. (9). None of the
cited papers5–8 prove that Eq. (9) holds for the solution of
the diffusion equation; they merely assert it. The asser-
tion is false, and therefore it is not true that transport
theory predicts in any guise or approximation that D is
independent of absorption. In their later paper8 Durdu-
ran et al. recognize this but remain neutral on what D
should be, finally deciding to leave the decision to the re-
sults of a Monte Carlo calculation.

Second, even if Eq. (9) were correct, it does not imply
Eq. (10) as a logical consequence. There is no logical rea-
son for preferring D 5 1/3ms8 to D 5 1/3(ms8 1 ma0),
where ma0 can assume any value whatever.
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This argument can be put in another way. Substitut-
ing f 5 c exp(2mact) into Eq. (7) eliminates the absorp-
tion term (the one with ma) but does not change any origi-
nal dependence of D on ma .

B. Other Derivations of Diffusion Theory
Diffusion theory is extremely robust, in that it is the
lowest-order approximation to transport theory almost no
matter how the approximation is made. Some well-
known approaches, all assuming isotropic scattering, are
a random-walk or random-flight approach,10 elementary
kinetic theory,11 and a consistent asymptotic scaling.12

They do not necessarily all lead to the same expression for
D. For instance, the kinetic theory approach gives nei-
ther Eq. (8) nor Eq. (10) but11 D 5 ms /3m t

2. All the ex-
pressions for D are, however, the same to first order in
ma /m t .

All of these approaches require that ma ! m. Con-
trary to the assertions of Furutsu and Yamada,5,6 the P1
approximation requires this as well. Physically this is
because it assumes a nearly isotropic intensity distribu-
tion, implying that the flux is small, which in turn by
Fick’s law implies a small intensity gradient, something
incompatible with large absorption. It is for this reason
that the question of precisely which value to use for the
diffusion coefficient has been of little concern up to now.
It is only with recent work on migration of infrared radia-
tion in tissue that the issue has arisen, because the media
of interest may be extremely thick, and small differences
in D can make large differences in the solutions deep in
the medium.

C. Diffusion Theory in the Asymptotic Region
There is one regime in which diffusion theory is valid and
the absorption need not be small, and that is in the
asymptotic region, at many mean free paths from strong
sources and boundaries and at late times compared with
the mean free time. (This is not asymptotic in the sense
of the work of Larsen and Keller,12 which requires that
there be some parameter of smallness in which a consis-
tent expansion of the transport equation can be made.)

Consider first the sourceless time-independent trans-
port equation in a half-space. The analysis given by
Case and Zweifel13 shows that the solution is made up of
a transient component that becomes negligible several
mean free paths from the boundary, plus one or more
terms, each of which falls off exponentially with an at-
tenuation length larger than a mean free path. For iso-
tropic or linearly anisotropic scattering, there is only one
of these exponential terms; as the scattering becomes
strongly anisotropic, more of these terms can appear.14,15

At a distance from the boundary sufficiently large that
only the dominant term remains, the solution is exponen-
tial and therefore satisfies the diffusion equation in this
asymptotic region. This exponential attenuation length
n is the desired diffusion length and is to be identified
with AD/ma, since that is the attenuation length pre-
dicted by Eq. (7). Once n is determined for a given value
of ma , this suffices to calculate D. In their classic mono-
graph of nearly half a century ago, Case et al.16 define D
in this way. We argue that this is the proper definition,
and we have used it to calculate D. This is in fact the
regime in which both the Monte Carlo calculations4,8 and
the experiments4 to which we refer were done. We stress
that this and only this diffusion solution is the correct so-
lution of the transport equation in the bulk of the me-
dium.

Case et al.16 give the dispersion relation that deter-
mines n for isotropic scattering. The equation, quoted by
Case and Zweifel,13 is

Ãn

2
ln

n 1 1
n 2 1

5 1, (11)

where Ã 5 ms /m t and n is given in units of the mean free
path. Even though a numerical computation is easy, it is
still instructive to examine the analytical solution of Case
et al.,16 which is given in the form of an expansion in 1
2 Ã 5 ma /m t . This is easily obtained from Eq. (11) by
successive approximations. The result is16

1/n2 5 3~1 2 Ã!F1 2
4
5

~1 2 Ã! 1
4

175
~1 2 Ã!2

1
4

175
~1 2 Ã!3 1

7556
336,875

~1 2 Ã!4

1
471,844

21,896,875
~1 2 Ã!5 1 ...G , (12)

from which 1/D 5 3m t times the quantity in the brackets.
(For isotropic scattering, m tr 5 m t .) Replacing the fac-
tor in the bracket by unity for small Ã gives Eq. (8).
However, that is not an appropriate procedure, since it
neglects terms in ma /m t of the same order as the one re-
tained. The correct result to first order in the absorption
is

1/D 5 3m tS 1 2
4
5

ma

m t
D 5 3~ms 1 0.2ma!. (13)

This is closer numerically to Eq. (10) than to Eq. (8).
However, it does not say that the absorption can be ne-
glected altogether.

Holte17,18 has derived a more general expansion for-
mula valid for anisotropic scattering, to wit:

1
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2
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2

h2

h4
D 1 ...G ,

(14)

where

hl 5 ~2l 1 1 !~1 2 Ã f l!, (15)

and the fl are defined by Eq. (3). Then f1 5 g, h0
5 ma /m t , h1 5 3m tr /m t , and 1/D 5 3m tr times the
quantity in brackets. Again, consistency requires that at
least the first-order term in the brackets be taken into ac-
count. Equation (14) reduces to Eq. (12) when fl 5 0, l
. 0, but does not in general lead to a neat form for the
diffusion coefficient such as Eq. (13). It is less accurate
than Eq. (12) because the quantity in the brackets goes
only to third order in h0 , two orders less than in Eq. (12).
Both Eqs. (12) and (14) are accurate to approximately 1
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part in 105 for Ã . 0.9 and to approximately 1% for Ã
5 0.5. In any case, one can calculate D numerically by
using a PN approximation,13 a double-PN approx-
imation13 (as we did), or a Chandrasekhar discrete-
ordinate approximation,19 among others, to solve the ei-
genvalue equation and by increasing the degree of ap-
proximation to get as accurate an answer for 1/D as
desired.

We remark in passing that the method described by
Case and Zweifel gives not only the attenuation length
but also the shape of the angular intensity.13 For isotro-
pic scattering in slab geometry, the distribution is propor-
tional to (n 2 m)21, where m is the cosine of the angle
with the slab normal. When the absorption is small, n
@ 1, so this expression is almost constant and the distri-

bution is almost isotropic; the P1 approximation is valid.
As the absorption increases, n decreases until it becomes
unity for 100% absorption, and the distribution can be-
come very anisotropic indeed. This is one way to see why
the P1 approximation fails for large absorption. When
the scattering is anisotropic, the distribution is a polyno-
mial in m plus a term proportional to (n 2 m)21, and one
reaches the same conclusion.

D. Asymptotic Solutions for Time-Dependent Transport
We asserted in the Introduction that one should examine
the time-independent rather than the time-dependent
equation to get a value for D. In this section we discuss
the reasons for this assertion.

Bowden20 has discussed the eigenvalue problem for the
time-dependent transport equation for isotropic scatter-
ing. Carrying out the procedure leading to Eq. (11) on
the Laplace time-transformed equation leads to the dis-
persion relation

Ãk

2~1 1 s/c !
ln

k 1 1
k 2 1

5 1, (16)

where s is the Laplace transform variable and

k 5 ~1 1 s/c !n. (17)

(Note that our notation differs slightly here from that in
Ref. 20, in which the particle speed c was taken as unity
and s 2 1 rather than s was taken as the transform vari-
able.) This equation is identical to Eq. (11) with Ã
→ Ã / (1 1 s/c) and n → k. Thus one immediately has
a solution for which n depends on s. It follows that the
time-dependent solution, which is obtained by Laplace-
inverting the solution of the transform equation, has a
simple exponential spatial dependence only at long times,
to which only the s 5 0 transform solution contributes.
It follows in turn that the attenuation length of the diffu-
sion mode for the time-dependent equation is identical to
that for the static equation, discussed above. The rea-
soning is the same for anisotropic scattering.

Looking directly at D perhaps puts the contradiction
between an absorption-independent diffusion coefficient
for the time-dependent diffusion equation and the exact
result of Case et al.16 in perhaps its starkest form. It is
obvious (and is also well known) that the solution of the
time-independent diffusion equation is obtained from that
of the time-dependent equation by integrating over all
time. That means that whatever the diffusion coefficient
be for the time-dependent equation, the time-independent
equation must have the same D. But in a time-
independent situation we know the result of Case et al.16

to be correct.
We conclude that Monte Carlo calculations for the

time-dependent situation must, if they are correct, give
the diffusion coefficient valid for the static case, which, as
we have pointed out, can be obtained numerically by com-
putationally fast standard methods.

3. NUMERICAL RESULTS
The quantity n (or n2) can be calculated by standard pro-
cedures, either as the largest eigenvalue of a certain ei-
genvalue equation or, equivalently, from a dispersion
relation.13 We have calculated n2, and from it D, by the
transfer matrix method21 in both double-P20 and double-
P99 approximations. A double-P20 calculation (a 42-term
expansion of the angular intensity) for a single medium
takes ;0.02 s on a 166-MHz Pentium computer, almost
independent of the number of terms in the partial-wave
expansion, and it gives six-figure accuracy in n almost
down to ma /m t 5 0.1. A double-P99 calculation (a 200-
term expansion) takes ;1/3 s. Note that one does not
need to solve a transport problem for the intensity to ob-
tain D. Geometry is in no way involved, since D depends
only on the properties of the medium.

Since the question addressed here is how the absorp-
tion affects the diffusion coefficient, it is convenient to
write D in terms of parameter a as

D 5
1

3~ms8 1 am a!
. (18)

The point is that the parameter a should vary much more
weakly with absorption than D. Equation (8) is a special
case of this equation with a 5 1, and Eq. (10) is a special
case with a 5 0. We have already seen that transport
theory predicts a 5 0.2 for isotropic scattering and very
small absorption. More generally, for small absorption
the Holte formula gives a 5 1 2 (4/5)(1 2 f1)/(1 2 f2).
We did calculations for Henyey–Greenstein scattering22

for values of Ã from unity down to 0.1 and values of g up
to 0.8. Sample results are given in Table 1. For various
values of Ã and g we have tabulated D, a, n, and n2 , the
attenuation length of the second-most-rapidly-attenuated
mode. The significance of n2 is that diffusion does not set
in until this mode is negligibly small, a few times the dis-
tance n2 into the medium. The lengths D, n, and n2 are
given in units of the mean free path l t 5 1/m t . All the
results are accurate to the precision shown.

Although a does not vary strongly with absorption, it is
a much stronger function of the fl . For isotropic or
weakly anisotropic ( g < 0.2) scattering it increases
somewhat with increasing absorption. For isotropic scat-
tering it is 0.20 or 0.21 for up to 30% absorption, then in-
creases sharply to 0.30 at 90% absorption. For weakly
anisotropic scattering the variation is much weaker. For
g > 0.30, a decreases with increasing absorption. The
smallest value we found for a was 0.20. As can be seen,
a becomes greater than 0.5 for g 5 0.8 and absorption
probability less than 0.2.
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It should be noted that n2 is significantly different from
unity only for very anisotropic scattering in which a large
number of nonzero fl are present. But even the largest
value shown in the table, 1.45 l t , is only about ;0.4
transport mean free path, so in practice the boundary re-
gion, in which the asymptotic regime is not yet estab-
lished, is quite small.

4. DISCUSSION OF THE EXPERIMENTAL
APPROACH
Bassani et al.4 measured the attenuation length n of pho-
tons in a water suspension of either polystyrene spheres
or Liposyne 10%, with India ink added as an absorber.
Their experiments indicate that n is proportional to the
inverse square root of the absorption coefficient. They
show that D from Eq. (10) agrees well with their results to
within the error bars, while that from Eq. (8) lies well out-
side the error bars. The experiments were performed in
the asymptotic region, both in space and in time.

Two questions immediately spring to mind: Do the
conditions of the experiments satisfy the assumptions of
transport theory, and what value of D does the transport
calculation give for the media in which the experiments
were performed? We have a partial answer to these
questions for the polystyrene spheres but not for the Li-
posyne.

The radius of the polystyrene spheres was r
5 0.3995 mm, ms8 5 1.25 mm21, g 5 0.898, and the ratio

of the scattering cross section to the geometrical cross sec-
tion was g 5 1.885. The first two numbers are given in
the paper of Bassani et al.4 and the last two were kindly
communicated to us by Giovanni Zaccanti.23 Since ms8
5 (1 2 g)Ng p r2, where N is the density of spheres,
these numbers give N 5 1.3 3 1010 spheres cm23, from
which the mean spacing between spheres is a 5 N1/3

5 4 mm. This is large compared with both the wave-
length of the light used (634 nm) and the particle diam-
eter, and it is small compared to the mean free path. Un-
der these conditions, transport theory should apply.
Unfortunately, no comparable estimates are available for
the Liposyne spheres, so it is not clear whether one
should expect transport theory to hold for those experi-
ments.

Table 1. Diffusion Coefficient D; Parameter a
Defined by Eq. (18); Diffusion Attenuation

Length n ; and Attenuation Length n2 of Transient
Modes for Henyey–Greenstein Scattering, All As

Functions of Single-Scattering Probability Ã
and Anisotropy Parameter g

Ã g D a n n2

0.9 0.0 0.362219 0.20 1.90 1.00
0.8 0.0 0.396287 0.21 1.41 1.00
0.5 0.0 0.545367 0.22 1.04 1.00
0.9 0.2 0.442572 0.33 2.10 1.00
0.8 0.2 0.472148 0.33 1.54 1.00
0.5 0.2 0.593280 0.32 1.09 1.00
0.9 0.8 1.435385 0.52 3.79 1.45
0.8 0.8 1.285539 0.50 2.54 1.32
Presumably the polystyrene spheres are Mie scatter-
ers, and their diameters are quite uniform. If the
partial-wave coefficients of the Mie scattering were avail-
able, one could compute a and D. They are not available
at present, but we hope that they will be in the near fu-
ture. It may be that the results will be consistent with
the experiments. They will certainly be intermediate be-
tween those of the two models that Bassani et al.4 consid-
ered.

Theory and experiment will be harder to bring into har-
mony for the Liposyne spheres. We have no information
about the size and density of scatterers, and we know
little about the phase function and the scattering cross
section. Perhaps more important, the error bars on the
experiments seem to show little leeway for any value of a
much different from zero. Thus even if we could deter-
mine that the experiments are in the regime in which
transport theory holds and if we could actually obtain the
input data with which to calculate n 2, it does not seem
likely that the calculated n 2 would agree with the experi-
ment.

5. CONCLUSION
There are two issues involved here. One is the relation of
diffusion theory to transport theory; the other is the rela-
tion between a transport calculation and experiment.
We have argued that the proper derivation of diffusion
theory from transport theory is the asymptotic approach,
in which the diffusion solution is taken to be the domi-
nant discrete mode of the full solution. This is so both
because the asymptotic region is the only one in which the
intensity curve obtained from transport theory is known
to satisfy the diffusion equation and because this is truly
the regime of experimental interest in the context of dif-
fusion tomography, the field in which the question of the
proper D to use arose. The asymptotic region may be
analyzed whatever the strength of the absorption in the
medium or the degree of anisotropy of the photon distri-
bution. One obtains a distinct dependence of diffusion
coefficient on absorption. Since this contradicts results
obtained by some workers, we have indicated the errors in
the arguments that have led others to conclude that no
dependence exists.

If the medium satisfies the assumptions of transport
theory, agreement with the asymptotic transport theory
results is mandatory. The theory unambiguously gives a
value of D that depends on absorption. If the experimen-
tal results are correct, any disagreement with the calcu-
lations implies that either the medium does not satisfy
the assumptions of transport theory or else that the me-
dium is different from that assumed in the calculations.
As discussed above, the suspension of polystyrene spheres
in the experiments of Bassani et al.4 seems to satisfy the
assumptions of transport theory; we do not know whether
the Liposyne suspension does. In neither case do we
know the values of Ã or the fl , so no direct comparison of
theory with experiment has been made. In view of those
results that we have obtained, it seems unlikely that
there is any medium in which D is independent of absorp-
tion. If there is, it is a special case; no such result is true
in general. It still remains, however, to do a calculation



R. Aronson and N. Corngold Vol. 16, No. 5 /May 1999/J. Opt. Soc. Am. A 1071
for the specific media of Bassani et al.4 and make a direct
comparison between theory and experiment.

Note added in proof. Two papers have appeared re-
cently that support our conclusions. Durian24 has per-
formed Monte Carlo calculations that he compares with
solutions of the telegrapher’s equation. He, too, con-
cludes that D depends on absorption, and recommends a
5 1/3.

Rinzema et al.9 measured the intensity for a point iso-
tropic source in two different media consisting of suspen-
sions of latex spheres in water with a dye added for ab-
sorption. In addition, they carried out transport
calculations and found excellent agreement with the ex-
perimental results. They also tabulated values of k0
5 m t /n. Using their published ms , ma and g, plus the
appropriate values of the fl , kindly furnished to us by
Kees Rinzema,25 we calculated both the intensity curves
and k0 by the transfer matrix method.21 The results
were in complete agreement with those of Rinzema et al.9

Though they did not address the question discussed in
this paper, one can calculate D and a from their published
results. We find a 5 0.55 for their Case 1 and a
5 0.59 for their Case 2. Thus their experiments show a
clear absorption dependence for D.
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