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Radiative transfer implies a modified
reciprocity relation
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The usual global reciprocity relations of radiative transfer do not hold for two points located in regions of dif-
ferent index of refraction. Modified reciprocity relations that involve the relative index are derived. The
result has computational as well as theoretical consequences. © 1997 Optical Society of America
[S0740-3232(97)01202-7]
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1. INTRODUCTION
A common article of wisdom both in linear particle trans-
port and in diffusion theory is that global reciprocity
holds. That is, if source and detector are interchanged
(and, in transport theory, if particle motions are re-
versed), the new detector readings are the same as the old
ones, with no assumptions about the spatial arrangement
of material. This paper will demonstrate that this reci-
procity property fails for light when source and detector
sit in regions of different index of refraction. Instead, it
must be replaced by a modified reciprocity relation.
There are requirements on the scattering, such as that
detailed balance hold. Here we consider the case of elas-
tic scattering, in the sense used by astrophysicists, in
which the recoil energy of the scatterers is negligible.
The discussion here will be restricted to time-independent
problems.
The major applications of linear particle transport (and

of diffusion, which is an approximation to linear trans-
port) have been in neutron transport and in radiative
transfer. In neutron transport the difficulty does not
arise; in radiative transfer it evidently has not been con-
sidered before now. The motivation for the present work
is the burgeoning application to medical imaging by
light.1 In the regime of interest in most of that work, one
deals with monoenergetic photons (that is, Newtonian
particles) subject to random collisions but obeying the
laws of geometrical optics. Thus at discontinuities in the
index of refraction, the reflection is specular and the re-
fraction obeys Snell’s law. A tool in frequent use is per-
turbation theory, which requires for its application solu-
tion of an adjoint problem.2 The results of this paper are
relevant to the usual procedure of obtaining the adjoint
solution by solving a direct problem and using reciprocity.
The reciprocity relation can be stated as a symmetry

property of the Green’s function. In diffusion theory, this
is3

G~r, r8! 5 G~r8, r!, (1)

where G(r, r8) is the intensity at r resulting from a unit
isotropic source at r8. In transport theory it is4
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G~r, V̂; r8, V̂8! 5 G~r8, 2V8; r, 2V̂!, (2)

where G(r, V̂; r8, V̂8) is the angular intensity at r in di-
rection V̂ due to a unit monodirectional source at r8 in di-
rection V̂8. That is, interchanging source and detector
and simultaneously reversing particle directions does not
change the detector reading. This reciprocity is a global
consequence of time-reversal invariance.
Equation (1) arises from the fact that the diffusion

problem is self-adjoint. It is well known that the Green’s
functions of self-adjoint operators are Hermitian. The
transport operator is not self-adjoint. In general, there
need be no reciprocity relation for the Green’s function of
a non-self-adjoint operator, as in the case, for instance, of
the transport equation for neutrons in the slowing-down
region. When the scattering kernel is symmetric, as in
the situation discussed here, or when it can be symme-
trized, as, for instance, for thermal neutrons, one can still
obtain a reciprocity relation for the transport Green’s
function.
In the presence of nonuniform index of refraction the

diffusion operator is no longer self-adjoint and Eq. (1)
fails. Likewise, Eq. (2) fails in transport theory. The
finding of this paper is that nevertheless, one can find
generalized reciprocity relations, in which Eqs. (1) and (2)
must be replaced respectively by the relations

G~r8, r! 5 n2G~r, r8! (3)

and

G~r8, V̂; r, V̂! 5 n2G~r, 2V̂; r8, 2V̂8!, (4)

where n is the relative index of refraction from r to r8. It
is not G but G/n2(r) that is symmetric, where n(r) is the
index at the field point.
Equation (1) follows from Eq. (2), as does Eq. (3) from

Eq. (4), by averaging the transport theory results over ini-
tial direction and integrating over final direction. It
must be proved separately for diffusion theory, however,
because both the diffusion equation and the diffusion in-
terface conditions are approximations to the transport re-
sults.
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First diffusion theory and then transport theory is con-
sidered for two-region systems. The results are then ex-
tended to arbitrary variations in the index of refraction.
The result is illustrated with a discussion of collisionless
transport in two half-spaces, which allows an explicit so-
lution. Finally, computational consequences of using the
generalized reciprocity relations are discussed.

2. DIFFUSION THEORY
First consider diffusion theory because it is simpler. The
diffusion Green’s function satisfies the equation

¹ • D~r!¹G~r, r8! 1 Sa~r!G~r, r8! 5 d~r 2 r8!, (5)

in some volume V, where D is the diffusion coefficient and
Sa is the macroscopic absorption cross section at r. The
usual boundary condition, whether the boundary is free
or whether Fresnel reflection holds, is that G satisfies a
linear boundary condition when r is on the surface S.
The standard proof of reciprocity is to multiply Eq. (5) by
G(r, r9), subtract from it the corresponding relation with
r8 and r9 interchanged, integrate over the volume, and
use Green’s theorem to change the term with the diver-
gence into a surface integral. The result is

E
S
dSê • D~r!@G~r, r9!¹G~r, r8! 2 G~r, r8!¹G~r, r9!#

5 G~r8, r9! 2 G~r9, r8!. (6)

The unit vector in the outward normal direction is written
here as ê to avoid confusion with the index of refraction n.
The left-hand side vanishes for homogeneous linear
boundary conditions of the form aG 1 b]G/]e 5 0,
where ]/]e is a normal derivative, and Eq. (1) follows.
The self-adjointness of the diffusion operator has been in-
voked here explicitly to prove the result.
Now suppose that V is composed of two regions, V1 and

V2 , with index of refraction n1 and n2 , respectively. The
procedure in the last paragraph must be done separately
for V1 and V2 because the Green’s function is discontinu-
ous on the interface S8. The surface integrals still van-
ish on the exterior portion of S but not on S8. For Vi , Eq.
(6) must be replaced by

Ii [ E
S8
dSêi • D~ri!@G~ri , r9!¹G~ri , r8!

2 G~ri , r8!¹G~ri , r9!#

5 Hi~r8!G~r8, r9! 2 Hi~r9!G~r9, r8!, (7)

where Ii designates the surface integral evaluated on the
Vi side of S8 and êi is the unit normal pointing outward
from Vi (so that ê1 5 2ê2). The symbol ri in the argu-
ments explicitly designates a surface point with the func-
tion defined on the Vi side. The symbol Hi(r) represents
the step function for Vi: It is unity if r P Vi and zero
otherwise. While the diffusion operator in each region is
self-adjoint, the problem is not; the discontinuity in the
Green’s function spoils the self-adjointness, which would
require that I1 5 2I2.
The flux due to a unit source at r8 is given by J(r, r8)

5 2D(r)¹G(r, r8) and must be continuous everywhere,
including interfaces. For particles, the second interface
condition is that G be continuous. For photons obeying
geometrical optics, the flux is still continuous, since this is
just a statement of energy conservation. The appropri-
ate second interface condition here is5

n2G~r1 , r8! 2 G~r2 , r8! 5 C~n !ê1 • J~r, r8!, (8)

where n is the relative index of refraction from V1 to V2
and C(n) is a constant depending on n alone. The sym-
bol r rather than r1 or r2 appears on the right-hand side
of Eq. (8) because the expression is continuous. This re-
lation was derived by a generalization of the simple ki-
netic theory argument that leads to Fick’s law. Then

E
S8
dSê2 • D~r2!G~r2 , r9!¹G~r2 , r8!

5 E
S8
dSê1 • J~r, r8!@n2G~r1, r9!

2 C~n !ê1 • J~r, r9!]. (9)

It follows that I2 5 2n2I1, and so

@n2H1~r8! 1 H2~r8!#G~r8, r9!

5 @n2H1~r9! 1 H2~r9!#G~r9, r8!. (10)

Equation (3) follows immediately.

3. TRANSPORT THEORY
The linear transport equation for the Green’s function is

V̂ • ¹G~r, V̂; r8, V̂8! 1 S t~r!G~r, V̂; r8, V̂8!

5 E dV1Ss~r; V̂1 → V̂!G~r, V̂1 ; r8, V̂8!

1 d~r 2 r8!d~V̂ 2 V̂8!. (11)

In the usual proof of reciprocity, one multiplies this equa-
tion by G9(r, 2V̂) [ G(r, 2V̂; r9, 2V̂9), subtracts from
it G8(r, V̂) [ G(r, V̂; r8,V̂8) multiplied by the equation
for G9(r, 2V̂), and integrates over all r and V̂. The sec-
ond term on the left makes no contribution. Neither does
the scattering term, by virtue of the reciprocity of the dif-
ferential scattering cross section required by time-
reversal invariance, to wit: Ss(r; V̂1 → V̂)
5 Ss(r; 2V̂→ 2V̂1). The result is

E
S
drE dV̂ê • V̂G9~r, 2V̂!G8~r, V̂!

5 G9~r8, 2V̂8! 2 G8~r9, V̂9!. (12)

The left-hand side vanishes for both a free surface (no ra-
diation incident from the outside) and for specular reflec-
tion. In the former case, the boundary condition is
G(r, V̂) 5 0 when r P S and ê • V̂ , 0, where the ge-
neric G is introduced to represent either G8 or G9 and the
argument r in G is suppressed for surface points. Thus
either G9(r, 2V̂) or G8(r, V̂) vanishes on the surface for
all V̂. For specular reflection,

G~2V̂! 5 r~ ê • V̂!G~V̂r!, r P S, ê • V̂ . 0,
(13)
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where 2V̂r is the direction of the reflected ray for incident
direction V̂, and r(ê•V̂) is the reflection probability. The
surface integral in Eq. (12) can thus be rewritten as

E
ê • V̂ . 0

dV̂ê • V̂r~ ê • V̂!@G9~V̂r!G8~V̂! 2 G9~V̂!G8~V̂r!#.

(14)

Since ê • V̂ 5 ê • V̂r and V̂ and V̂r are 180° apart in azi-
muth about ê, the integral vanishes.
For the two-region problem, again there is a surface

contribution only from S8, so

Ii [ E
S8
drJi~r, r8, V̂8, r9, V̂9!

5 Hi~r8!G9~r8, 2V̂8! 2 Hi~r9!G8~r9, V̂9!, (15)

where

Ji [ E dV̂iêi • V̂iG9~2V̂i!G8~V̂i!. (16)

The arguments on Ji have been suppressed here.
While reflection contributes nothing to these integrals,

transmission does. Conservation of energy gives the in-
terface condition

dV̂jêj • V̂jG~V̂j! 5 2dV̂iêi • V̂it i → j~ êi • V̂i!G~V̂i!,

êi • V̂i . 0. (17)

Here V̂ i is the direction vector of a ray on the Vi side of
the interface, V̂ j is the direction vector of the same ray
(refracted) on the Vj side [so that G(V̂ i) is to be evaluated
on the Vi-side of the interface], and ti→j(êi • V̂i) is the
fraction of the energy incident on the interface at r in di-
rection V̂ i transmitted from Vi to Vj . The minus sign
comes from the fact that ê1•V̂1 and ê2•V̂2 have opposite
signs, since ê1 5 2ê2. Local reciprocity demands that

ti→j~ êi • V̂i! 5 tj→i~2êj • V̂j!. (18)

The Fresnel formulas explicitly obey this reciprocity.6

From Snell’s law one derives that

dV̂1ê1 • V̂1 5 2n2dV̂2ê2 • V̂2 . (19)

This, together with Eq. (17), gives the n2 law of radiance,
G(V̂2) 5 n2t1→2(ê1 • V̂1)G(V̂1), where ê1 • V̂1 . 0. It
follows that
J2 5 E
ê1 • V̂1 . 0

dV̂2ê2 • V̂2@G9~2V̂2!G8~V̂2!

2 G9~V̂2!G8~2V̂2!#

5 2E
ê1 • V̂1 . 0

dV̂1ê1 • V̂1t1 → 2~ ê1 • V̂1!

3 @G9~2V̂2!G8~V̂1! 2 G9~V̂1!G8~2V̂2!#

5 2E
ê1 • V̂1 . 0

dV̂1ê1 • V̂1t2 → 1~2ê2 • V̂2!

3 @G9~2V̂2!G8~V̂1! 2 G9~V̂1!G8~2V̂2!#

5 E
ê1 • V̂1 , 0

dV̂1ê1 • V̂1t2 → 1~ ê2 • V̂2!

3 @G9~V̂2!G8~2V̂1! 2 G9~2V̂1!G8~V̂2!#

5 2n2E
ê1 • V̂1 , 0

dV̂2ê2 • V̂2t2 → 1~ ê2 • V̂2!

3 @G9~V̂2!G8~2V̂1! 2 G9~2V̂1!G8~V̂2!#

5 n2E
ê1 • V̂1 , 0

dV̂1ê1 • V̂1@G9~V̂1!G8~2V̂1!

2 G9~2V̂1!G8~V̂1!#

5 2n2E dV̂1ê1 • V̂1G9~2V̂1!G8~V̂1! 5 2n2J1 .

(20)

The first equality here comes from writing the integral in
Eq. (16) in terms of directions such that ê1 • V̂1 . 0; the
second uses Eq. (17); the third, Eq. (18); the fourth re-
places V̂ with 2V̂; the fifth uses Eq. (19); the sixth, Eq.
(17) again; and the seventh equality extends the integral
to all V̂. It follows from Eq. (20) that n2I1 1 I2 5 0 and
thus that

@n2H1~r8! 1 H2~r8!#G9~r8, 2V̂8!

5 @n2H1~r9! 1 H2~r9!#G8~r9, V̂9!, (21)

which gives Eq. (4).

A. Generalization to General Geometries
To extend the diffusion theory results beyond a simple
two-region geometry, consider any closed surface S with
local outward normal ê and define

K [ E
S
dSê • D~r !@G~r, r9!¹G~r, r8!

2 G~r, r8!¹G~r, r9!#/n2~r!, (22)

where n(r) is the local index of refraction at r. It follows
from the results above that while n(r) may not be con-
tinuous, the surface integral K is invariant for surfaces S
that can be deformed into one another by a continuous
transformation without passing through r8 or r9. Let S
enclose both points. It was shown above that when S is
taken as the outer boundary of the system, K 5 0. De-
form the surface to two infinitesimal spheres, one sur-
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rounding r8 and one surrounding r9. On the first sphere,
n(r) 5 n(r8) and on the second, n(r) 5 n(r9), while K
5 0. Thus

G~r8, r9!/n2~r8! 2 G~r9, r8!/n2~r9! 5 0. (23)

Since the relative index of refraction is n 5 n(r9)/n(r8),
Eq. (3) follows. The same argument leads to Eq. (4) in
transport theory, where here one defines

K 5 E
S
dr/n2~r!E dV̂ê • V̂G9~r, 2V̂!G8~r, V̂!. (24)

B. Example: Collisionless Transport for Two Half-
spaces
The results of this paper are hardly intuitive. One can
perhaps see better how the modified reciprocity comes
about by examining the result of explicit calculation in a
simple case, for example, for purely absorbing media in
plane geometry.
Consider two uniform nonscattering half-spaces with

interface at x 5 0. For x . 0 the index of refraction is
unity and the macroscopic absorption cross section is S;
for x , 0 the index is n and the cross section S8. A plane
source at x8 , 0 emits 1 photon/s into a small solid angle
DV̂8 making angle cos21 m8 with the positive x axis, and a
collimated detector at x . 0 accepts photons in a small
solid angle DV̂ centered about the direction given by
cos21 m. Let us examine first the case of no absorption.
If the photons from the source do not enter the detector,
the Green’s function is zero, and clearly this is also the
case if source and detector are interchanged with the
same collimation directions, so reciprocity holds trivially.
The other situation is that DV̂ is the solid angle into
which the emitted beam is refracted. In that case, the
flux in the interval (x8, 0), and thus at the flux incident on
the interface, is m8, so the transmitted flux is m8t, where t
is the transmission probability for photons with angle of
incidence cos21 m8 from the left. The angular intensity at
the detector is thus m8t/DV̂. Absorption puts in some ex-
ponential factors. The end result is that

G~x, V̂; x8, V̂8! 5 ~m8t/DV̂!exp~2S8ux8u/m8 2 Sx/m!.
(25)

The same argument, interchanging source and detector,
gives

G~x8, 2V̂8; x, 2V̂!

5 ~mt/DV̂8!exp~2S8ux8u/m8 2 Sx/m!, (26)

since t is symmetric. But to first order in DV̂, Snell’s law
says that mDV̂ 5 n2m8DV̂8, so

G~x8, 2V̂8; x, 2V̂! 5 n2G~x, V̂; x8, V̂8!, (27)

which is a version of Eq. (4).

4. DISCUSSION
It has been shown that it is necessary to modify the usual
reciprocity relations for the time-independent diffusion
and transport equations according to both Eqs. (3) and (4)
when the index of refraction at the field point is different
from that at the source point.
The approach in this paper has been to derive the re-

sults for a continuous change in the index by going to the
limit from the results for a discontinuous change.
Pomraning7 derived a transport equation for photons in
the presence of a continuous index. His derivation is
very formal, though it is possible to derive his equation, at
least in the one-wavelength picture used here, in a much
more physical way. I have proved Eq. (4) also from his
equations, but the procedure is no simpler than the deri-
vation given here.
Besides being of theoretical interest, the necessary

modification of the customary reciprocity relations has
practical computational consequences. In the applica-
tion that led to this investigation, the transport of light in
tissue, the problem of interest is an inverse problem.1

One wants to know the collision cross sections locally
within the tissue, given the scattered intensity distribu-
tion at the surface of the body or some subset of that in-
formation. Much work has been done using a perturba-
tion approach, for which the decrease in the intensity at a
detector position rd of a given change d Sa(r) in the ab-
sorption cross section at r, for instance, is given in diffu-
sion theory by *d Sa(r)G(r, rs)G(rd , r)dr, where rs is the
source position. The validity of this expression can be
seen by a physical argument. The quantity d Sa(r)
3 G(r, rs) is the change in the absorption density at r
that is due to d Sa(r), which serves as a negative volume
source for diffusion from r to rd . The Green’s function
G(rd , r) is usually computed by taking the detector as a
source and r as the field point and using the reciprocity
relation. In most medical imaging applications the de-
tector is in air and r is in tissue. For a typical index of
refraction for tissue of approximately 1.4, the result of us-
ing Eq. (1) or Eq. (2) would be equivalent to making an
error of a factor of 2 in all the detector readings. For
changes in other cross sections, such as scattering, or for
other detectors (surface flux detectors, for instance), the
result is the same, as it is if transport theory is used in-
stead.
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