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Boundary conditions for diffusion of light
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In connection with recent work on remote imaging of random media by light, a straightforward generalization
of the proper diffusion boundary conditions is presented that takes into account Fresnel reflection. The Milne
problem at exterior boundaries is solved for various values of index of refraction, absorption, and scattering
anisotropy parameters to yield extrapolated end points and extrapolation distances. A generalized interface
condition is derived to replace the usual condition of continuity of intensity. Benchmark-quality numerical
results are given for the extrapolation distance and for the new index-dependent parameter in the interface
conditions. Difficulties in using the extrapolated end point when the index is sufficiently large are discussed,
and a new image procedure suitable for this case is presented.
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1. INTRODUCTION
The past few years have seen considerable and growing
interest in the passage of near-infrared light through bio-
logical tissue, with a view to developing new diagnostic
methods.1 It is accepted generally in the field that a
transport model can be used for analysis and, more par-
ticularly, that the diffusion approximation is applicable in
most cases of interest. Just as neutron diffusion became
a prime tool in the analysis of nuclear reactors, photon dif-
fusion has become a prime tool in this new field of optical
diffusion tomography.2 The essential difference between
neutron (or, more generally, particle) diffusion and pho-
ton diffusion is that for particles a change in the medium
changes only the diffusion properties; for photons there
is also reflection when the index of refraction changes.
This reflection affects the diffusion solutions by chang-
ing the boundary conditions. There have been extensive
efforts to derive boundary conditions,3 – 8 mostly approxi-
mate. Here “exact” results are presented, exact in the
sense that we start from the standard prescriptions for
boundary conditions for particles, add only the effect of
Fresnel reflection, and obtain exact results for the result-
ing integrals.

The usual procedure is to determine exterior bound-
ary conditions from the solution of the transport equa-
tion, to which the diffusion equation is an approximation,
while interior boundary conditions (interface conditions)
are determined in a sense self-consistently within diffu-
sion theory. For this reason, we will discuss them sepa-
rately. For the exterior problem we obtain modifications
to the universally accepted particle extrapolation distance
of 0.7104 mean free path.9 For the interior problem we
obtain a modification of the condition that the intensity is
continuous at an interface. The new condition involves a
single parameter that depends only on the relative index
of refraction. Tables and graphs of this function and also
a good parametric fit are given. Finally, we compare our
results with approximate results given in the literature.
We consider the external problem first.
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2. EXTERIOR BOUNDARIES
It is well known that the diffusion equation requires non-
physical exterior boundary conditions for its solution. It
is obvious that physically the particle distribution is com-
pletely determined by the sources interior to the medium
and the incident surface distribution. On the other hand,
the diffusion equation is an equation for the intensity,
which at a boundary requires knowledge not only of the
incident distribution but of the exit distribution as well.
Physically this is part of the output, not of the input. In
contrast, the exact transport equation requires the physi-
cally correct boundary conditions. The problem arises
from the fact that diffusion is valid deep in the interior
of the medium but not within a boundary region of the
order of two or three transport mean free paths. This
difficulty is not unique to transport problems. It occurs
in a number of fields. For instance, the usual hydrody-
namic equations are unsuitable for calculating fluid flow
in boundary regions, and a solution of equations valid
in the boundary region must be used to determine the
appropriate boundary conditions to use for calculations in
the bulk.

Which of the infinite number of solutions of the dif-
fusion equation is obtained depends on the boundary
conditions chosen. Although diffusion-type boundary
conditions are sensibly used at interfaces, they are not
appropriate at exterior boundaries because they do not
give the correct interior solution. The usual condition
used to obtain the correct diffusion solution, i.e., the
solution that becomes identical with that for the exact
transport equation in the asymptotic region (that is, deep
in the interior of the medium), is that the diffusion so-
lution vanish at a certain distance outside the physical
boundary. This distance is known as the extrapolated
end point.9 This is generally computed at a free bound-
ary, i.e., one with nothing incident upon it. That is the
usual situation considered for light, in which the proxi-
mate source of the diffusing light is not the incident
light, which is by no means random, but a distribution
1995 Optical Society of America
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of scattered light in the interior. The asymptotic inten-
sity satisfies the diffusion equation, and it is the solution
sought from diffusion theory. It should be stressed that
this solution is not valid in the boundary region. The
extrapolated end point z0 is defined as the distance from
the boundary at which the extrapolated asymptotic inten-
sity curve vanishes; the extrapolation distance d is the
distance at which the curve extrapolated linearly from
the boundary vanishes. When there is no reflection and
no absorption in the medium, the asymptotic intensity
curve is linear, and the two are the same. Otherwise
the curve is concave, and so long as z0 exists, z0 . d.

The commonly used extrapolated end point given by
transport theory for particles is 0.7104 transport mean
free path. This is calculated for a plane boundary
from the solution of the Milne problem (sources in the
deep interior) for a nonabsorbing medium with isotropic
scattering.9 It is useful because the quantity cz0, where
c is the probability of the particle’s surviving a single col-
lision, is exceedingly close to 0.7104 transport mean free
path over quite a wide range of absorption9 and is not
even a strong function of the curvature of the boundary
surface.10

Diffusion of light is different from that for particles
in just one significant aspect. Particles do not recognize
boundaries. They merely experience different conditions
on one side of a boundary from those on the other. On the
other hand, light is subject to reflection and refraction at
boundaries. Because we are here interested in the effect
of a boundary on what goes on within the medium, refrac-
tion is not of concern at an exterior boundary, although
it is relevant at interfaces. Reflection is important at all
boundaries.

Reflection back into the interior occurs in other similar
transport problems as well, such as for nuclear reactors,
in which the core is generally surrounded by a reflection
region to inhibit neutron leakage.11 In that case, how-
ever, the reflector is a physically separate region, so that
a two-region diffusion calculation can be done. Here it is
merely a boundary with no width. To see the effect of re-
flection at the exterior boundary, consider the case of total
specular reflection. (The reflection of light at a vacuum
boundary is specular, though not total.) Every photon
reflected from the mirror is the continuation of the path
of the mirror image of the incident photon. That is, one
can think equally well of the real world with reflection at
the mirror or of the real and mirror worlds together, with
particles from the mirror world approaching the mirror
and going straight through it, while the incident particles
from the real world sail right through the mirror, their
continuations being the mirror images of the actual par-
ticles being reflected from the mirror.

The asymptotic intensity curve is certainly smooth, and
because it is even with respect to the mirror surface
(z ­ 0), its slope must vanish there. Thus the extrapo-
lation distance is infinite. In the absence of absorption,
the asymptotic intensity is linear in z, so that the curve is
flat and the extrapolated end point is also infinite. When
absorption is present, the extrapolated curve never does
reach zero (because it is the mirror image of the real
intensity curve, which is everywhere positive), so the ex-
trapolated end point does not exist. In that case the ex-
trapolated asymptotic intensity curve never goes to zero
but reaches a minimum and starts increasing with in-
creasing distance from the boundary.

3. ANALYSIS: EXTERIOR BOUNDARIES
The extrapolated end point z0 is defined as the distance
from a vacuum boundary at which the asymptotic part
of the solution of the Milne problem vanishes. This is
the problem of transport in a half-space z $ 0 with a
source infinitely far into the interior. Mathematically,
z0 is defined in plane geometry by the condition

I ass2z0d ­ 0 , (1)

where Iasszd is the asymptotic intensity at a distance z
into the medium. It can be seen that the definition of d
in Section 2 is equivalent to

d ­ Iass0dyIas0s0d , (2)

where the prime indicates a derivative with respect to z.
The asymptotic intensity for the Milne problem in a

half-space with nonvanishing absorption can be shown to
be of the form9

Iasszd ­ expslzd 1 A exps2lzd , (3)

where A is a constant determined by solution of the
transport equation. It depends on the properties of the
medium and on the reflection at the free surface. It is
unity for total reflection and decreases with decreasing
reflection to a value in the interval s21, 0d in the absence
of reflection [greater than 21 because I ass0d must be posi-
tive and less than 0 because the leakage from the bound-
ary must reduce I as].

Equation (3) is clearly a solution of the time-indepen-
dent diffusion equation f 00 2 l2f ­ 0, so l has to be iden-
tified with the reciprocal of the diffusion length. From
the definitions we see that

z0 ­ 2s1y2ldlns2Ad , (4)

d ­
1
l

1 1 A
1 2 A

. (5)

These are just two ways of representing the value of the
parameter A that determines the asymptotic intensity, so
which of these quantities one uses is purely a matter of
convenience. When there is no absorption, l ­ 0. An
analytic limiting procedure leads to a linear form Iasszd ­
z0 1 z in place of Eq. (3), with d ­ z0.

In the presence of absorption, A is positive for suf-
ficiently strong reflection, and z0 is then complex.
Physically this corresponds to the absence of an extrapo-
lated boundary—the extrapolated intensity never van-
ishes. There are two reasonable possibilities for dealing
with this. If one uses the boundary conditions directly,
one should prescribe d rather than z0. But often it is
convenient to use the method of images. Aside from
an irrelevant scale factor, Eq. (3) can be rewritten as
I asszd ­ sinh lsz 1 z0d when A , 0, so I as plus its ex-
trapolation for negative z is odd about z ­ 2z0. Thus
one can account for the effect of the boundary on I as for
z . 0 by adding to any source S at z0 an image source
S 0 ­ 2S at 22z0 2 z0. An extension of this idea is sug-
gested here for use when A . 0. An extrapolated end
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point no longer exists, but, again aside from a scale fac-
tor, Eq. (3) is equivalent to I asszd ­ cosh lsz 1 z1d, where
z1 ­ Resz0d ­ 2s1y2ldln A. The extrapolated solution is
even about z1, so the image source corresponding to an
actual source S at z0 is S 0 ­ 1S at 22z1 2 z0.

I previously used the transfer matrix method to solve
the Milne problem with a reflecting boundary condition
characterized by the reflection function R.12,13 The A
used here is the FFF 00 of the latter reference, and the l is
called l0 there. The resulting expressions for z0 and d
are evaluated here in a double-PN approximation.12,14 In
this approximation, R is represented by a square matrix
R of order N 1 1.

In the particle case a plane vacuum boundary is non-
reentrant. That is, any particle incident on the boundary
escapes and is lost. In that case, R ­ 0. For light, one
must take account of Fresnel reflection at the boundary.
To describe the reflection, let m0 be the cosine of the angle
of incidence, m be the cosine of the angle of reflection,
m0 be the cosine of the angle of refraction into vacuum,
mc be the cosine of the critical angle, and n be the index
of refraction.

Snell’s law gives

m2
0 ­ 1 2 n2 1 n2m2. (6)

At the boundary there is Fresnel reflection. In the spirit
of diffusion theory, which implies randomness in polariza-
tion as well as in direction of the light, we must assume
unpolarized light incident on the boundary. The reflec-
tion coefficient can be written as

Rs m, m0d ­ rs mdds m 2 m0 d , (7)

where the Dirac delta function is the mathematical repre-
sentation of the fact that the reflection is specular and15

rs md ­
1
2

24√
m 2 nm0

m 1 nm0

!2

1

√
m0 2 nm

m0 1 nm

!2
35, m $ mc ,

­ 1, m # mc .

(8)

The quantity rs md gives the reflection probability for a
photon incident upon the boundary at an angle cos21 m.

In the double-PN approximation, the elements of R are
given for 0 # i, j # N by14

Rij ­ s2i 1 1d
Z 1

0
Dis mddm

Z 1

0
Rs m, m0 dDj s m0 ddm0

­ s2i 1 1d
Z 1

0
rs mdDis mdDj s mddm

­ dij 2 s2i 1 1dsij , (9)

where

sij ­
Z 1

mc

f1 2 rs mdgDis mdDj s md dm . (10)

In these equations dij is the Kronecker delta and the
Dis md are the half-range Legendre polynomials:
Dis md ­ Pis2m 2 1d . (11)

Inasmuch as Dis mdDj s md is a polynomial in m, the inte-
grals are sums of terms of the form

Jk ­
Z 1

mc

f1 2 rs mdgmk dm . (12)

One way of proceeding is to use the substitution t ­
snm 2 m0dy

p
n2 2 1, which gives

Jk ­
1 2 mk11

c

k 1 1
2

1
2

0@p
n2 2 1
2n

1Ak11

3
Z 1

p

24t4 1

√
t2 2 g
1 2 gt2

!2
35 s1 1 t2dks1 2 t2d

tk12
dt , (13)

where m ­
p

n2 2 1 st2 1 1dy2nt, g ­ sn2 2 1dysn2 1 1d,
and p ­ fsn 2 1dysn 1 1dg1/2.

The integrand in Eq. (13) is a rational function of t,
so the integral can be evaluated exactly. The resulting
expressions are extremely cumbersome, so this approach
was used only as a check. For the primary calculations,
the integration variable was taken to be x ­ 2m0 2 1.
This gives

sij ­ s1ynd
Z 1

21

"
1

s m 1 nm0d2
1

1
s m0 1 nmd2

#
3 Dis mdDj s mdm2

0dx . (14)

Here m0 ­ s1 1 xdy2 and, from Eq. (6), m ­ sn2 2 1 1

m
2
0d1/2yn.
The quantity si0 was evaluated for 0 # i # 2N by a

96-point Gaussian quadrature. One expects this to give
good results for N less than ,48. In fact, no differ-
ence was found between the values calculated by exact
and Gaussian integration for selected Ri0 for N ­ 30.
The integrals were also checked by use of y ­ s2t 2 1 2

pdys1 2 pd as the integration variable . The integrals
in si0 were transformed to integrals over y from 21 to
1 and a 96-point Gaussian integration applied to these.
Because this is an inherently different integration scheme
from the integration over x, the results serve as a check
on the Gaussian approximation. Again they were found
to be accurate.

The sij for 0 , j # i # 2N 2 j were calculated from
the recursion relation

si,j11 ­
1

j 1 1

(
2j 1 1
2i 1 1

fsi 1 1dsi11,j 1 isi21,j g 2 jsi,j21

)
,

(15)

which follows from the recursion relation for the Legendre
polynomials. Because of the symmetry of sij , this gives
all the sij for 0 # i, j # N and therefore all the re-
quired Rij .

4. INTERFACES
Inasmuch as the diffusion equation is a second-order par-
tial differential equation in space, one boundary condition
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is required at the exterior boundary and two conditions
are required at any interior interface between two media.
For particle diffusion, the usual conditions are that the
intensity and flux be continuous across the interface.11

Continuity of flux is demanded by the diffusion equation
itself, if one integrates it across the narrow interface re-
gion. From the physical point of view, the diffusion equa-
tion is a continuity equation for the particles. Continuity
of flux expresses the same thing—a finite number of par-
ticles cannot be absorbed in an infinitesimally small re-
gion. For particles, the intensity is taken as continuous
across an interface because the diffusing particles do not
recognize an interface when they cross it. The collision
probabilities change on the other side, but there are no
road signs at the interface itself. Photons, by contrast,
see a change in the index of refraction, so it cannot be
required that the photon intensity be continuous across a
material discontinuity.

The procedure of the previous sections can in principle
be used at an interface between two media, but it seldom
is. Just as at an exterior boundary, one can calculate the
extrapolated end point for each medium in the presence
of the other, making use of the reflection properties of
medium 1 is computing z0 for medium 2 and vice versa.
The drawback of this scheme is twofold. First, the prob-
lem at hand resembles the Milne problem only for the
medium that contains the sources and only if the sources
are in the deep interior. Second, there is no nearly uni-
versal number such as 0.71 because the result depends
on the combined properties of both media. If they are
identical, for instance, z0 is infinite. In fact, ordinarily
two media resemble each other much more than either
resembles a vacuum, because a condition for the validity
of diffusion theory is that the absorption be small. This
means that the effect of internal discontinuities is less
severe than that for a free surface.

5. ANALYSIS: PARTICLE
DIFFUSION AT INTERFACES
We take as a starting point the well-known formulas for
the partial fluxes at an interface, in plane geometry. We
take the stratification perpendicular to the z axis and ask
for the downward flux J2 across the plane z ­ 0. With
the standard diffusion theory assumptions of no absorp-
tion, isotropic scattering and weakly varying particle dis-
tribution, a first-order expansion in the intensity gives11

J2 ­ sfy2d
Z 1

0
mdm 1 sf0y2 Std

Z 1

0
m2dm

­ fy4 1 f0y6 St , (16)

where St is the macroscopic total cross section, f is the
intensity at z ­ 0, and f0 is the derivative of f there.
Similarly, the upward flux through the plane z ­ 0 is

J1 ­ sfy2d
Z 1

0
mdm 2 sf0y2 Std

Z 1

0
m2dm

­ fy4 2 f0y6 St . (17)

The net upward flux is
J ­ J1 2 J2 . (18)

Away from an interface, where f is continuous, this gives

J ­ 2s1y3 Stdf0. (19)

The basic approximation of diffusion is Fick’s law:

JJJ ­ 2D=f . (20)

Comparison with Eq. (19) gives

D ­ 1y3St . (21)

Thus we may rewrite Eqs. (16) and (17) as

J2 ­ s1y4df 1 s1y2dDf0 ­ s1y4df 2 s1y2dJ , (22)

J1 ­ s1y4df 2 s1y2dDf0 ­ s1y4df 1 s1y2dJ . (23)

If there is a material boundary at the interface, so that
the cross sections are different on the two sides, then D is
discontinuous. As J is continuous, f0 is discontinuous.

There are many ways of deriving these results, all of
which involve an assumption of weakly varying angular
intensity. When the assumptions are relaxed, as when
the scattering is slightly anisotropic or there is some ab-
sorption, different derivations lead to somewhat differ-
ent results. For instance, the elementary kinetic theory
derivation leads to an additional factor of SsySt in the
presence of absorption, where Ss is the macroscopic scat-
tering cross section. A derivation starting from an as-
sumption that the angular intensity is linear in m does
not give this factor. This should not be too surprising.
The difference in any computed intensities is of higher
order in SsySt. We choose to work with Eqs. (16) and
(17). Further, the main effect of anisotropic scattering
is to replace St in Eqs. (16), (17), and (21) by the trans-
port cross section Str, defined by11

Str ­ s1 2 gdSs 1 Sa , (24)

where Sa is the macroscopic absorption cross section and
the anisotropy parameter g is the average cosine of the
scattering angle. In the following discussion we will as-
sume that this replacement has been made.

6. PHOTON DIFFUSION
Consider a material discontinuity at z ­ 0. Let the dif-
fusion coefficient and the index of refraction be D1 ­
1ys3Strd1 and n1, respectively, for z . 0 and D2 ­ 1ys3Strd2

and n2 for z , 0. The relative index of refraction in go-
ing from the upper medium to the lower one is n ­ n2yn1.
Equations (16) and (17) must both be modified to include
a factor 1 2 r in the integrand. We must also take into
account the discontinuity of f at the interface, taking
f ­ f1 in the expression for J2 and f ­ f2 in the ex-
pression for J1.

In all generality we can take n . 1. We will define the
cosine of the angle of incidence from below as m and that
from above as m0. The partial fluxes at the interface are
then
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J2 ­ f1y2
Z 1

0
f1 2 rs m0dgm0dm0 1 3D1f0

1y2

3
Z 1

0
f1 2 rs m0dgm2

0dm0 , (25)

J1 ­ f2y2
Z 1

0
f1 2 rs mdgmdm 2 3D2f0

2y2

3
Z 1

0
f1 2 rs mdgm2dm . (26)

If we think of m and m0 as defining directions in the two
media without regard to whether they refer to angle of
incidence, angle of reflection, or angle of refraction, then
they are related by Snell’s law, Eq. (6). Because the net
flux J is continuous, Fick’s law gives

D1f0
1 ­ D2f0

2 ­ 2J . (27)

Thus

J2 ­ sA1f1 2 B1Jdy2 , (28)

J1 ­ sA2f2 1 B2Jdy2 , (29)

where

A1 ­
Z 1

0
f1 2 rs m0dgm0 dm0 , (30)

A2 ­
Z 1

mc

f1 2 rs mdgm dm , (31)

B1 ­ 3
Z 1

0
f1 2 rs m0dgm2

0 dm0 , (32)

B2 ­ 3
Z 1

mc

f1 2 rs mdgm2 dm . (33)

Subtracting Eq. (28) from Eq. (29) gives

J ­ sA2f2 2 A1f1dys2 2 B1 2 B2d . (34)

Keijzer et al.3 approximated the reflection coefficient
by an exponential function and integrated the resulting
expressions for A1, A2 and B1 1 B2. An exact result is
given here.

7. EXACT INTERFACE CONDITION
It is apparent from Eqs. (6) and (8) that rs m0, nd ­
rs m, 1ynd. Here we have explicitly inserted the rela-
tive index of refraction into the expression for r. Be-
cause from Eq. (6), m0dm0 ­ n2m dm, we see immediately
that A1 ­ n2A2. This result was previously obtained by
Cohen16 in the case in which there is no net flux, and it
is also perhaps implicit in some work of Preisendorfer.17

We find the result here in complete generality. Then,
from Eq. (34),

f2 2 n2f1 ­ CsndJ , (35)

where we have explicitly pointed out the n-dependence of
C, which is defined by

Csnd ­ s2 2 B1 2 B2dyA2 . (36)

Because B1 and B2 are both less than unity and A2 is
positive, Csnd is also positive.
Now B1 and B2 are computed just like the J1 and J2

defined in Eq. (12). Further, the same argument that
relates A1 and A2 gives

B1 ­ 3
Z 1

mc

f1 2 rs mdgm0m dm . (37)

In terms of the integration variable t discussed in
Section 3 one has m0 ­

p
n2 2 1 s1 2 t2dy2t. The inte-

grand is again a rational function of t, similar to that
for B2. Thus the integrals in A2, B2, and B1 can all be
carried out analytically when they are transformed into
integrals over t. The resulting formulas are given in
Appendix A. The analytical result for A1 was known to
Walsh18 in somewhat different form as early as 1926.

As in Section 3, here we used a 96-point Gaussian in-
tegration over the variable x ­ 2m0 2 1 defined before
Eq. (14). As before, agreement between those results
and the analytical ones was essentially perfect.

At a free boundary, J ­ J1, and Eqs. (2), (27), and
(29), along with D2 ­ 1y3Str, give the expression d ­
s2 2 B2dy3A2 as an alternative to the extrapolation dis-
tance calculated from transport theory. We will see some
numerical results for this expression, but, as discussed
above, this approach has little physical justification.

8. RESULTS
The quantities d and z0 have been computed as functions
of n and the single-scattering albedo c ­ SsySt. Most
of the results were for isotropic scattering, but some cal-
culations for anisotropic scattering were also carried out.
The double-PN calculations used N ­ 30, but convergence
was excellent even for N ­ 5, for which z0 was computed
correctly to four decimal places. All the results are given
in units of the mean free path.

Table 1 gives values of cz0, which is less dependent on
c than is z0, for 1 , n , 2 and for 1.00 . c . 0.90 for
isotropic scattering. The results are shown graphically
in Fig. 1 for c ­ 1 and n , 5 and in Fig. 2 for c , 1 and
n , 2. For c ­ 1, d ­ z0. The values of cz0 for c , 1
are seen to rise remarkably rapidly with n, the more so as
the absorption increases. For instance, for no absorption
and n ­ 1.5, cz0 is more than triple the value of 0.71 for
n ­ 1. For 5% absorption, it is more than four times as
large. For n $ 2.1, z0 is not real for c # 0.99. In Fig. 2,
each curve for c # 0.98 ends. This means that z0 goes

Table 1. Extrapolated End Point Times c,
Isotropic Scattering

c

n 1.00 0.99 0.98 0.97 0.96 0.94 0.92 0.90

1.0 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71
1.1 0.88 0.88 0.88 0.87 0.87 0.86 0.86 0.85
1.2 1.15 1.14 1.14 1.13 1.13 1.12 1.11 1.10
1.3 1.47 1.48 1.48 1.48 1.48 1.48 1.48 1.48
1.4 1.86 1.88 1.90 1.93 1.96 2.02 2.09 2.19
1.5 2.30 2.37 2.44 2.54 2.65 3.00 3.84 —
1.6 2.79 2.95 3.16 3.46 3.97 — — —
1.7 3.32 3.66 4.21 5.52 — — — —
1.8 3.92 4.58 6.32 — — — — —
1.9 4.56 5.87 — — — — — —
2.0 5.25 8.11 — — — — — —
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Fig. 1. Extrapolated end point. No absorption, isotropic scat-
tering.

Fig. 2. Extrapolated end point times c. Isotropic scattering.

to infinity before the next data point. By contrast, the
extrapolation distance d, shown in Table 2 and Fig. 3 for
the same range of c and n # 3, is well behaved for all
values of the index of refraction. Like z0, d increases
rapidly with n. It also decreases with c. Appendix B
gives quartic fits to d for several values of c for 1 , n , 3.

Table 2 and Fig. 3 also show, for comparison, the
diffusion-based result d ­ s2 2 B2dy3A2 discussed in
Section 7. The result is not bad for c ­ 1, but it deterio-
rates as the absorption increases. This is not surprising,
because it is derived for c ­ 1 and does not contain c as a
parameter. In contrast to a Milne problem calculation,
it cannot take into account any anisotropy, either.

To show the effect of anisotropy, d was calcu-
lated both for linearly anisotropic scattering and for
a Henyey–Greenstein phase function. Table 3 shows
s1 2 gcdd for an anisotropy parameter g ­ 0.8, along
with the comparable values for isotropic scattering. The
factor 1 2 gc is just Str in our units, so this table gives d
in units of the transport mean free path. In these units,
linear anisotropy has remarkably little effect even for
this large anisotropy factor, and even the more-peaked
Henyey–Greenstein anisotropy does not make a large
difference.

For the interface problem the quantity Csnd is tabulated
in Table 4 and shown graphically in Fig. 4. It is zero, as
expected, when n ­ 1. The results for 1 , n , 3.73 were
fitted in two separate ranges, with an error of less than
4% at worst. The independent variable is taken to be
p ­ fsn 2 1dysn 1 1dg1/2, and p1 ­ p 2 0.64. The result is

Table 2. Extrapolation Distance,
Isotropic Scattering

c

n 1.00 0.98 0.96 0.94 0.92 0.90 Diffusion

1.0 0.71 0.72 0.72 0.73 0.74 0.75 0.67
1.1 0.88 0.88 0.88 0.88 0.88 0.88 0.90
1.2 1.15 1.13 1.12 1.10 1.09 1.08 1.20
1.3 1.47 1.44 1.41 1.39 1.36 1.33 1.56
1.4 1.86 1.81 1.76 1.72 1.67 1.63 1.97
1.5 2.30 2.23 2.16 2.09 2.03 1.97 2.42
1.6 2.79 2.69 2.60 2.52 2.43 2.35 2.92
1.7 3.32 3.21 3.09 2.98 2.87 2.77 3.47
1.8 3.92 3.77 3.63 3.49 3.36 3.23 4.07
1.9 4.56 4.38 4.21 4.05 3.89 3.73 4.72
2.0 5.25 5.05 4.85 4.65 4.46 4.27 5.42
2.1 6.00 5.76 5.53 5.30 5.07 4.85 6.17
2.2 6.81 6.53 6.26 5.99 5.73 5.48 6.98
2.3 7.67 7.35 7.04 6.74 6.44 6.15 7.84
2.4 8.59 8.23 7.88 7.53 7.19 6.86 8.77
2.5 9.57 9.16 8.77 8.38 8.00 7.62 9.75
2.6 10.61 10.16 9.71 9.28 8.85 8.43 10.79
2.7 11.71 11.21 10.71 10.23 9.75 9.29 11.90
2.8 12.88 12.32 11.78 11.24 10.71 10.19 13.07
2.9 14.11 13.50 12.90 12.30 11.72 11.15 14.30
3.0 15.42 14.74 14.08 13.43 12.79 12.16 15.61

Fig. 3. Extrapolation distance. Isotropic scattering, transport
mean free path units.

Table 3. Extrapolation Distance, g ­­­ 0.8,
in Transport Mean Free Pathsa

c ­ 1.0 c ­ 0.9

n Iso Lin H–G Iso Lin H–G

1.3 1.47 1.47 1.47 1.33 1.36 1.23
2.0 5.25 5.25 5.34 4.27 4.45 3.59
3.0 15.42 15.42 16.10 12.16 12.66 9.90

aIso, isotropic; Lin, linear; H–G, Henyey– Greenstein.
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Table 4. Interface Coefficient Csssnddd

n Csnd n Csnd

1.0 0.00 2.2 10.97
1.2 0.66 2.4 14.46
1.4 1.86 2.6 18.51
1.6 3.47 2.8 23.16
1.8 5.51 3.0 28.44
2.0 7.99

Fig. 4. Interface coefficient Csnd.

Csnd ­ 25.6p3f1 2 s45y32dp 1 s83y21dp2g ,

1 , n , 1.82 ,

­ 14.3s1 1 9.35p1 1 49.1p1
2 1 327p1

3 1 1800p1
4d ,

1.82 # n # 3.73 . (38)

The form for n , 1.82 is just the small-p expansion of
Csnd. The form for larger n is a quartic fit to the data.

9. DISCUSSION
This paper has presented conditions at both interior and
exterior boundaries that should be used to describe the
diffusion of light. At an exterior boundary, a description
in terms of the extrapolation distance d is more suitable
than one in terms of the extrapolated end point z0 because
d is positive for all finite n. Alternatively, a new varia-
tion of the method of images has been suggested here for
use when z0 is complex, in which a source S at z0 is sup-
plemented with an image source S 0 ­ 1S at 22z1 2 z0,
where z1 ­ Resz0d. The effect of reflection is to increase
z0 and d greatly. The error in neglecting extrapolation is
therefore much greater than for particles. If one wishes
to neglect the effect in a particular application, it is nec-
essary to justify the neglect. If extrapolation is taken
into account, it is not appropriate to use the extrapola-
tion distance of 0.71 transport mean free path used for
particles. Rather, the data given here should be used.
Although diffusion-based values of d have been presented
here for comparison, I cannot think of any possible reason
for using them. The transport theory results are here
and available. The only way that one could be confident
in using the diffusion approach is post hoc, since one has
to do a transport theory calculation anyway to justify the
diffusion-type results. As expected, the diffusion-type re-
sults become closer and closer to the transport theory re-
sults with no absorption as the reflection increases. This
is to be expected—the effect of the discontinuity becomes
smaller and smaller.

The consistent diffusion interface condition for photons
has been used to derive Eq. (35), and exact results for
the coefficient Csnd of the flux have been presented. The
results do not depend on the cross sections of the two
materials.

One final caveat remains: These conditions, like the
corresponding conditions for particle diffusion, were ob-
tained by consideration of problems with plane symme-
try. The motivation for this and related studies comes
typically from situations in which the diffusion sources
are line sources, so that there is also a relevant radial
variable. That is, the results are being applied to situ-
ations for which they were never meant. This is not
much of a difficulty for the interface conditions, because
the media for the most part are large, and the lateral di-
mensions of their interfaces cover many mean free paths.
The problem is for exterior boundary conditions. A par-
tial justification is that nothing better is available. But
also, radiation at boundary points far from the source has
for the most part traveled through regions well into the
interior,19,20 and so the situation somewhat resembles the
Milne problem. It is expected, then, that the exterior
boundary conditions obtained here should hold fairly well
far from the source. Near the source, they do not, but
this is precisely the region in which the diffusion solution
cannot be expected to be very good anyway.

APPENDIX A: INTERFACE CONSTANTS
The results of the integrations for A1, B1, and B2 are

A1 ­
5n6 1 8n5 1 6n4 2 5n3 2 n 2 1

3sn2 1 1d2sn2 2 1dsn 1 1d

2
4n4sn4 1 1d

sn2 1 1d3sn2 2 1d2 log n

1
n2sn2 2 1d2

2sn2 1 1d3 log
n 1 1
n 2 1

, (A1)

B1 ­ 1 2
3sn2 2 1d3/2

16
sI0 2 I1 2 I2 1 I3d , (A2)

B2 ­ 1 2
sn2 2 1d3/2

n3

"
1 1

3
16

sI0 1 I1 2 I2 2 I3d

#
, (A3)

where

In ­ s1 2 p2n11dys2n 1 1d 1 Jn , (A4)

J0 ­
16n4

sn2 1 1d4
K2 2

8n2sn2 2 1d2

sn2 1 1d4
K1 2

8n2sn2 2 1d
sn2 1 1d3

3

√
1
p

2 1

!
1

sn2 2 1d2

3sn2 1 1d2

√
1
p3

2 1

!
, (A5)

J1 ­
16n4

sn2 1 1d3sn2 2 1d
K2 2

8n2sn4 1 1d
sn2 1 1d3sn2 2 1d

K1

1
sn2 2 1d2

sn2 1 1d2

√
1
p

2 1

!
, (A6)
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J2 ­
16n4

sn2 1 1d2sn2 2 1d2
K2 2

8n2

sn2 1 1d3sn2 2 1d
K1

1
sn2 1 1d2

sn2 2 1d2
s1 2 pd , (A7)

J3 ­
16n4

sn2 1 1dsn2 2 1d3
K2 2

8n2sn4 1 4n2 1 1d
sn2 1 1dsn2 2 1d3

K1

1
8n2 sn2 1 1d

sn2 2 1d3
s1 2 pd 1

sn2 1 1d2

3sn2 2 1d2
s1 2 p3d , (A8)

K1 ­

s
n2 1 1
n2 2 1

0@log

p
n2 1 1 1

p
n2 2 1

p
n2 1 1 1 n 2 1

1
1
2

log n

1A ,

(A9)

K2 ­
n2 1 1

4

√
1 2

p
n

!
1

1
2

K1 , (A10)

p ­

s
n 2 1
n 1 1

. (A11)

APPENDIX B: FIT TO
EXTRAPOLATION DISTANCE
The following quartic fits to d for isotropic scattering
for various values of c in the range from 1.0 to 0.9 are
accurate to within 3% in the range 1 , n , 3:

d ­2.94 2 7.01n 1 5.76n2 2 1.16n3 1 0.159n4, c ­ 1.00

­2.98 2 6.96n 1 5.68n2 2 1.16n3 1 0.157n4, c ­ 0.98

­2.83 2 6.50n 1 5.30n2 2 1.06n3 1 0.144n4, c ­ 0.96

­2.63 2 5.94n 1 4.84n2 2 0.94n3 1 0.129n4, c ­ 0.94

­2.77 2 6.16n 1 5.00n2 2 1.03n3 1 0.139n4, c ­ 0.92

­2.79 2 6.10n 1 4.95n2 2 1.04n3 1 0.140n4, c ­ 0.90 .

(B1)
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