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Abstract

Summary

In this report we introduce a weak-model approach for examination of the intrinsic time-vary-

ing properties of the hemoglobin signal, with the aim of advancing the application of func-

tional near infrared spectroscopy (fNIRS) for the detection of breast cancer, among other

potential uses. The developed methodology integrates concepts from stochastic network

theory with known modulatory features of the vascular bed, and in doing so provides access

to a previously unrecognized dense feature space that is shown to have promising diagnos-

tic potential. Notable features of the methodology include access to this information solely

from measures acquired in the resting state, and analysis of these by treating the various

components of the hemoglobin (Hb) signal as a co-varying interacting system.

Approach

The principal data-transform kernel projects Hb state-space trajectories onto a coordinate

system that constitutes a finite-state representation of covariations among the principal ele-

ments of the Hb signal (i.e., its oxygenated (ΔoxyHb) and deoxygenated (ΔdeoxyHb) forms

and the associated dependent quantities: total hemoglobin (ΔtotalHb = ΔoxyHb + Δdeox-

yHb), hemoglobin oxygen saturation (ΔHbO2Sat = 100Δ(oxyHb/totalHb)), and tissue-hemo-

globin oxygen exchange (ΔHbO2Exc = ΔdeoxyHb—ΔoxyHb)). The resulting ten-state

representation treats the evolution of this signal as a one-space, spatiotemporal network

that undergoes transitions from one state to another. States of the network are defined by

the algebraic signs of the amplitudes of the time-varying components of the Hb signal rela-

tive to their temporal mean values. This assignment produces several classes of coefficient

arrays, most with a dimension of 10×10.

Biological motivation

Motivating our approach is the understanding that effector mechanisms that modulate blood

delivery to tissue operate on macroscopic scales, in a spatially and temporally varying
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manner. Also recognized is that this behavior is sensitive to nonlinear actions of these effec-

tors, which include the binding properties of hemoglobin. Accessible phenomenology

includes measures of the kinetics and probabilities of network dynamics, which we treat as

surrogates for the actions of feedback mechanisms that modulate tissue-vascular coupling.

Findings

Qualitative and quantitative features of this space, and their potential to serve as markers of

disease, have been explored by examining continuous-wave fNIRS 3D tomographic time

series obtained from the breasts of women who do and do not have breast cancer. Inspec-

tion of the coefficient arrays reveals that they are governed predominantly by first-order rate

processes, and that each array class exhibits preferred structure that is mainly independent

of the others. Discussed are strategies that may serve to extend evaluation of the accessible

feature space and how the character of this information holds potential for development of

novel clinical and preclinical uses.

Introduction

Breast cancer is a diverse disease that produces a number of prominent phenotypic behaviors

that distinguish it from others. Hallmarks of cancer include enhanced angiogenesis, evasion of

immune surveillance, presence of a sustained inflammatory response, enhanced tissue stiff-

ness, resistance to cell death, and activation of invasion and metastasis, among others [1,2].

One avenue of development aimed at exploiting these characteristics is the use of imaging

methods. A focus of these has been detection of contrast features linked to tumor angiogenesis

[3]. For example, the understanding that tumor vessels are malformed and leaky has prompted

the use of MR contrast imaging [4]. Also, appreciation that tumors often have increased vascu-

lar density has motivated use of near infrared spectroscopy (NIRS) as a tool for measuring dis-

ease-dependent features linked to the hemoglobin (Hb) signal. Extension of the NIRS

technique in support of imaging has demonstrated that reliable detection of larger tumors

appears feasible [5,6], while early disease detection is problematic owing to image blurring

caused by scattering. Although this limitation is inherent to the method, other strategies for

extending the method’s utility have been considered. One approach has been to use it as a con-

firmatory technique, in the hope that identification of additional features may serve to limit

the number of false positive findings [7]. Prior knowledge also has been employed [8], as,

among other things, a basis for monitoring the response to neoadjuvant chemotherapy [9].

A different approach, advanced by our group, has the aim of extending detection of tumor

contrast features into the time domain, in recognition that either intrinsic or induced behav-

iors may provide for added disease detection and discrimination [10,11]. Reports exploring

this strategy have considered implementation of Valsalva maneuvers [12,13] or mechanical

force applied to the breast [14], to disturb blood flow to affected tissue in a discernible way.

That disease discriminatory features may arise from these maneuvers follows from the afore-

mentioned disturbances in tumor vessel morphology, which lead to increased interstitial pres-

sures and reduced flow [15]. While examination of the full potential of these maneuvers is

incomplete, reliance on evoked-response protocols seems likely to add to the operational com-

plexity of the technique.

Recently we have reported evidence that detection of breast cancer may be feasible, even for

small tumors, from measures obtained under resting-state conditions [16]. Compared to the
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mentioned maneuvers, this approach lessens concerns of patient compliance, while also likely

reducing instrumentation requirements. Still, experience in exploring resting-state behaviors

of the Hb signal from intact tissue with NIRS is limited. In the case of neuroimaging applica-

tions, the understanding that neural structures form a functional network has prompted adop-

tion of signal recognition methods that are sensitive to the presence of coordinated behaviors

[17]. However, because peripheral tissues, including the breast, lack structural elements equiv-

alent to those enabling the brain to exhibit such behaviors, extension of these methods to other

tissue types does not appear well justified.

The general problem of recognizing features from measures of time-varying behaviors is

one that spans many fields of study. In the case of natural systems, observed behaviors are

often not simply a consequence of one class of time-varying phenomenology, but rather arise

from interactions among the principal factors that determine system behavior. A corollary of

this is that while elementary features (e.g., frequency structure) of the individual components

that define state behaviors can be considered, the full extent of system behavior is not observ-

able from exploration of any one component. This understanding has important consequences

for attempts at appreciating principal behaviors tied to the Hb signal. In particular, we recog-

nize that most reports on NIRS measures of tissue, whether acquired in a resting state or under

other conditions, characterize behaviors based on evaluation of individual Hb-signal elements

and not as a system of interacting components.

In a previous report we outlined a basic methodology that recognized this feature, but it

lacked a formal mathematical framework [18]. Here our aim has been to expand on this by

implementing a modeling scheme that is motivated from understandings taken from the field

of stochastic network theory. As will be shown, while our principal focus has been to achieve a

useful methodology for evaluation of breast cancer, the developed approach appears suffi-

ciently general to find uses in other applications as well.

Rationale for model development

Investigation of time-varying behaviors of naturally occurring phenomena is often pursued by

adopting one of two different modeling strategies. Strong models are descriptions that relate

specific behaviors among variables in a well-defined manner. They explore data from the

premise that specific relationships are assignable and are valid under the conditions of mea-

surement. Weak models, on the other hand, make no attempt to invoke specific relationships,

but instead seek to appreciate dependences among features in a probabilistic sense. Each

approach has its value and tradeoffs.

Strong models support specific predictions at the cost of ignoring other phenomenology (i.
e., any that is not explicitly included in the model), and often with the goal of identifying non-

observable behaviors. Weak models explore directly observable features or those that can be

readily extracted by use of various data transforms. As a practical matter, experience shows

that weak model formalisms can be applied over a larger range of experimental conditions

than strong models, and is the preferred approach for clinical measures. Because the value of

these often depends on how effectively disease can be distinguished from non-disease, key is to

balance the experimental conditions against the analysis methodology in the hope that distin-

guishable features are expressed with sufficient fidelity for the applied sensing methodology to

register this information. Assuming the latter condition is met, it is useful to employ a feature

interrogation strategy that broadly supports inclusion of the observable phenomenology in

ways that do not require detailed prior knowledge of system mechanisms. Additionally, while

it might seem evident that the selected sensing technology should meet the conditions thus put

forth, what is not obvious is that disease-discriminating phenomenology has been or even
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could be sampled in a manner that optimally balances its expression under the conditions of

measurement and its recoverability by the applied analysis method. It follows that, in principle,

a well-considered weak-model approach is one that weighs the intersections among sensing

conditions, feature expression, and feature recovery, in relation to the influence that disease is

likely to have on observable features.

While this composite can take many forms, we are drawn to the properties of a finite Mar-

kov chain (FMC) as a simplified approximation of the behaviors that the co-varying elements

of the Hb-signal can be expected to exhibit. A factor motivating this choice is our recognition

that, apart from its oxygen delivery function, Hb also plays a key role in the trafficking of meta-

bolically generated gases. Among these are carbon dioxide and nitric oxide (NO), both of

which are known to have allosteric effects on the affinity of oxygen binding to hemoglobin

[19,20] and also influence the reactivity of the microvascular bed [21,22]. Having a nonlinear

influence, and similar to behaviors of other nonlinear systems, these effects can act to drive

system behavior from one preferred state to another. Also favoring a weak-model formalism is

the expectation that under resting-state conditions the feedback mechanisms affecting the

microvasculature act to maintain a roughly steady-state condition, and thus the associated

transition rates among elements of the nodal network are likely to reflect these influences. As

is reported here, the outcome of this composite is a methodology that is simply applied, with

good subject compliance, and that avails access to a previously unrecognized dense feature

space whose properties appear favorable for disease detection and characterization.

Methods

Relationships among co-varying elements of the Hb signal

Fig 1 illustrates the coordinate system applied to derive co-varying features of the Hb-signal

that are described by our weak-model formalism and applied to measures acquired under the

resting state. Assigned to the principal Cartesian axes are the simultaneously measured values

of relative changes in the oxygenated (ΔoxyHb) and deoxygenated (ΔdeoxyHb) forms of

hemoglobin. Also represented are concurrent relative changes in the three computed quanti-

ties of the Hb signal comprising total Hb, (ΔtotalHb = ΔdeoxyHb + ΔoxyHb), Hb oxygen satu-

ration (ΔHbO2Sat = 100Δ(oxyHb/totalHb)) and tissue-Hb oxygen exchange, ΔHbO2Exc =

ΔdeoxyHb—ΔoxyHb). It can be shown that the correct inclination angle for the ΔHbO2Sat

demarcation line with respect to the ΔdeoxyHb axis is tan-1(S0/(100 –S0)), where S0 is the tem-

poral mean value (in percentage) of HbO2Sat. The inclination angle depicted in Fig 1 corre-

sponds to S0 = 85% [6,23]. [see S1 Appendix for more compete derivation and explanation of

the assigned axes.]

Within this representation, plots of the time-varying behavior of the Hb signal trace out a

trajectory in state-space. As described below, we have elected to model this behavior not as a

continuous variable, but rather as a set of ten interacting finite states that are represented by

the spaces between the identified axes. The trajectory data can originate from primary time-

series measures of the Hb signal or from subsequent transformations that produce tomo-

graphic images. For simplicity, in this representation each state is defined with respect to the

algebraic sign of each element of the hemoglobin signal relative to its temporal mean value,

and the figure is annotated to reflect these definitions. Also, to provide a more complete char-

acterization of the co-varying states, hereafter referred as Hb states, in Table 1 we identify addi-

tional mathematical relations that are implicit in each state’s algebraic-sign permutation. For

example, State 10 combines ΔoxyHb> 0 with ΔdeoxyHb and ΔtotalHb both< 0. A negative

ΔtotalHb value is possible only if the ΔdeoxyHb concentration is below its temporal mean

value by an amount greater than that by which ΔoxyHb exceeds its own mean concentration,

Hemoglobin state-flux: A finite-state model representation of the hemoglobin signal
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and this fact is indicated in the right-most column of Table 1. Thus the Hb state definitions, by

incorporating information on all five Hb components, are based on the magnitudes of Δdeox-

yHb and ΔoxyHb in addition to their algebraic signs.

The identified coordinate system is an extension of the 6-state co-varying system originally

considered by our group [18,24]. It also represents an extension of subsequent reports that rec-

ognized added information accessible from a co-varying representation of the hemoglobin

components [25,26].

Quantification of inter-state Hb-transition coefficients

Every image voxel in a reconstructed image time series occupies exactly one of the ten Hb

states at each measurement time frame. Using v and t for the space and time variables,

respectively, and Δt for the reciprocal of the data sampling rate, s(v,t) denotes the state of

the vth voxel in the tth time frame and s(v,t+nΔt) is the state of the same voxel n time frames

later. The approach we take counts only the direct transitions from one state into a different

one [as described in S2 Appendix], and excludes all instances of s(v,t)!s(v,t+nΔt) that have

intervening transitions within the n-time-frame lag. Thus, we count all one-step transitions

of a specified type, irrespective of the time interval over which those transitions occur. This

has the effect of defining transitions based on a variable dwell time [See S3 Appendix for a

more detailed description of the transition-assignment methodology]. Also excluded from

the applied state definitions is any consideration of distance from the origin of the

Fig 1. Coordinate axes defining the Hb states. Regions in (ΔdeoxyHb, ΔoxyHb) space that correspond to increasing

or decreasing values, with respect to the temporal mean, for each commonly considered component of the Hb signal.

Numbered circles show the Hb state assigned to each of the ten sectors defined by the five lines that intersect at the

origin.

https://doi.org/10.1371/journal.pone.0198210.g001
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(ΔdeoxyHb, ΔoxyHb) coordinate system, even though we recognize the possibility that, for

example, the portion of the State-1 sector (Fig 1) preferentially transitioned into could be a

function of which of the other states (and their corresponding portion) was the predecessor.

This postulated history dependence would distinguish the network dynamics from those of

a true FMC.

Computation of state transition probability. At the start of a transition-probability

computation, a 10×10×N array of integer variables, where N is the largest value of the time

lag that will be considered (in practice it was found that N = 60 is sufficient for detection of

all transitions), is initialized to all zeros. Each element of the three-dimensional array will

accumulate a count of the number of transitions of a given type: position in the first dimen-

sion (“row”) encodes the Hb states that voxels transition into, in the second dimension

(“column”) the state that they transition from, and in the third dimension (“layer”) the time

lag for the transitions.

Starting with v = t = n = 1, the values of s(v,t) and s(v,t+nΔt) are compared. If s(v,t+nΔt) = s
(v,t), n is incremented by 1 and the comparison is repeated; but if s(v,t+nΔt) 6¼ s(v,t), the value

in the [s(v,t+nΔt),s(v,t),n]th element of the accumulator array is increased by 1. Each time the

inequality criterion is met (thereby indicating that a transition to a different state has

occurred), the current value of t is increased to t+nΔt (i.e., the previous post-transition time

frame becomes the new pre-transition time frame), and the procedure is repeated in order to

identify the next transition. This process of counting transitions and incrementing t continues

until the end of the time series is reached, at which point the value of v is incremented, t and n
are reset to 1, and the preceding sequence of operations is repeated until the maximum values

of v and t are reached.

Table 1. Hb states defined by the algebraic signs of Hb signal components relative to their respective temporal mean values.

State Algebraic sign of Component(aΔOΔDΔTΔEΔS Associated Mathematical Relations(b

1 - - - - + ΔE: |ΔO|< |ΔD|

ΔS: |ΔO|/O0 < |ΔT|/T0

2 - - - + + ΔE: |ΔO|> |ΔD|

ΔS: |ΔO|/O0 < |ΔT|/T0

3 - - - + - ΔE: |ΔO|> |ΔD|

ΔS: |ΔO|/O0 > |ΔT|/T0

4 - + - + - ΔS: |ΔO|/O0 > |ΔT|/T0

ΔT: |ΔO|> ΔD
5 - + + + - ΔT: |ΔO|< ΔD
6 + + + + - ΔE: ΔO< ΔD

ΔS: ΔO/O0 < ΔT/T0

7 + + + - - ΔE: ΔO> ΔD
ΔS: ΔO/O0 < ΔT/T0

8 + + + - + ΔE: ΔO> ΔD
ΔS: ΔO/O0 > ΔT/T0

9 + - + - + ΔS: ΔO/O0 > ΔT/T0

ΔT: ΔO> |ΔD|

10 + - - - + ΔT: ΔO< |ΔD|

a) Letters with ‘0’ subscripts denote temporal mean values; letters preceded by ‘Δ’ denote differences with respect to the temporal mean value. ‘O0’ = oxyHb, ‘ΔO’ =

ΔoxyHb; ‘ΔD’ = ΔdeoxyHb; ‘T0’ = totalHb, ‘ΔT’ = ΔtotalHb; ‘ΔE’ = ΔHbO2Exc; ‘ΔS’ = ΔHbO2Sat.

b) The inequalities in this column are implicit in the state definitions. That is, when ‘ΔD’ and ‘ΔO’ have the same algebraic sign, the sign of ‘ΔE’ determines whether ΔD
or ΔO has the larger magnitude; when ΔD and ΔO have opposite signs, the sign of ‘ΔT’ determines whether ΔD or ΔO has the larger magnitude; and when ΔO and ΔT
have the same sign, the sign of ‘ΔS’ determines whether ΔO/O0 or ΔT/T0 has the larger magnitude.

https://doi.org/10.1371/journal.pone.0198210.t001
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We use the symbol A to denote the accumulator array, and f (for “final state”) and i (“initial

state”) for the row and column indices, respectively. For f 6¼ i, (the f = i elements are superfluous

in this analysis) the sum
XN

n¼1
AfiðnÞ is the total number of transitions directly from state i to

state f, irrespective of the number of intervening time frames. The sum of accumulated values in

every layer of the array is proportional to the subject-specific time-series duration and voxel

count. Accordingly, to allow for computation of average transition matrices across subjects, we

normalize the sum of transition counts to 100, including only the 90 f 6¼ i elements in the nor-

malization. Thus

Pfi ¼
100
XN

n¼1

AfiðnÞ

X10

f¼1

X10

i¼1

ð1 � dfiÞ
XN

n¼1

AfiðnÞ
; ð1Þ

where δfi is the Kronecker delta.

Computation of state transition rate. The approach taken here also allows for extraction

of a mean time-lag value for each transition type:

tfi ¼

XN

n¼1

n � AfiðnÞ

XN

n¼1

AfiðnÞ
; ð2Þ

For f 6¼ i, the computed τfi value is the average number of time frames associated with tran-

sitions from state i into state f. The mean time can be transformed to an equivalent rate con-

stant for i!f transitions, where

kfi ¼
1

tfi
: ð3Þ

In Eq (3), kfi has units of (time frame)-1 which is easily converted to seconds-1 by multiply-

ing by the data sampling rate.

Quantification of transition-linked hemoglobin-concentration and

-saturation changes

A modification to the accumulation scheme allows us to determine amplitude-sensitive

measures that are equivalent to the average amounts by which levels of the five compo-

nents of the Hb signal change during each of the 90 i!f (f 6¼ i) transition types. Thus,

although the state definitions per se are independent of component amplitudes, and hence

of distance from the origin in Fig 1, measures defined here are sensitive to this feature. In

place of the single previously considered accumulator array, we now define six such

arrays,

ATC; AD; AE; AO; AS; AT ; ð4Þ

each having the same dimensionality and size as the accumulator considered in the pre-

ceding section and each initialized to all-zeros, and where the subscripts denote: TC =

transition count, D = ΔdeoxyHb, E = ΔHbO2Exc, O = ΔoxyHb, S = ΔHbO2Sat, T =

ΔtotalHb. For each transition, values stored in appropriate elements of the accumulators
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are incremented as follows:

ATCðsðv; t þ nDtÞ; sðv; tÞ; nÞ ! ATCðsðv; t þ nDtÞ; sðv; tÞ; nÞ þ 1;

ADðsðv; t þ nDtÞ; sðv; tÞ; nÞ ! ADðsðv; t þ nDtÞ; sðv; tÞ; nÞ

þ deoxyHbðv; t þ nDtÞ � deoxyHbðv; tÞ;

AEðsðv; t þ nDtÞ; sðv; tÞ; nÞ ! AEðsðv; t þ nDtÞ; sðv; tÞ; nÞ

þHbO2Excðv; t þ nDtÞ � HbO2Excðv; tÞ;

AOðsðv; t þ nDtÞ; sðv; tÞ; nÞ ! AOðsðv; t þ nDtÞ; sðv; tÞ; nÞ

þ oxyHbðv; t þ nDtÞ � oxyHbðv; tÞ;

ASðsðv; t þ nDtÞ; sðv; tÞ; nÞ ! ASðsðv; t þ nDtÞ; sðv; tÞ; nÞ

þHbO2Satðv; t þ nDtÞ � HbO2Satðv; tÞ;

ATðsðv; t þ nDtÞ; sðv; tÞ; nÞ ! ATðsðv; t þ nDtÞ; sðv; tÞ; nÞ

þ totalHbðv; t þ nDtÞ � totalHbðv; tÞ:

ð5Þ

Transition flux computation. The transition flux for a given hemodynamic-signal

component is equal to the average change in concentration or saturation, per transition of

a specified type. We refer to these quantities as representative of a ‘flux’, in a similar man-

ner to ion fluxes that occur across biological membranes, or to fluxes of material through

the chemical intermediates in a metabolic pathway. Mathematically, the flux for transi-

tions from state i to state f is equal to

�Xðf ; iÞ ¼

XN

n¼1

AXðf ; i; nÞ

XN

n¼1

ATCðf ; i; nÞ
; ð6Þ

where the generic symbol X is used to denote any of the five hemoglobin-signal compo-

nents D, E, O, S or T. Unlike the single arrays corresponding to the magnitude-indepen-

dent coefficients, here we obtain five sets of 10×10 arrays, one for each component of the

Hb signal.

As will be shown in Results, coefficient maps corresponding to component flux, and state

transition rate and probability, reveal distinct contrast features which suggest these can be

treated as mainly independent quantities. This leads to the understanding that it may also be

useful to examine ‘weighted’ quantities as defined by various combinations of coefficient

values.

Computation of weighted transition fluxes. A parameter combination that includes

transition flux (ϕ) as one of the factors can be conceptualized as a ‘weighted flux’, with the

remaining factor (k or P) constituting the weighting term. The PfiϕX(f,i) product for a given

hemodynamic-signal component is a quantity that we call the transition mass [mX(f,i)] and is

equal to the average concentration or saturation change that occurs during the time required

for a set number of transitions to happen. Proceeding from Eqs (1) and (6), we see that the
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mass for transitions from state i to state f, for signal component X, is

mXðf ; iÞ ¼ Pfi�Xðf ; iÞ ¼
100
XN

n¼1

ATCðf ; i; nÞ

X10

f¼1

X10

i¼1

ð1 � dfiÞ
XN

n¼1

ATCðf ; i; nÞ

XN

n¼1

AXðf ; i; nÞ

XN

n¼1

ATCðf ; i; nÞ

¼ 100

XN

n¼1

AXðf ; i; nÞ

X10

f¼1

X10

i¼1

ð1 � dfiÞ
XN

n¼1

ATCðf ; i; nÞ
:

ð7Þ

The quantity mX(f,i) defined in Eq (7) can be conceptualized as the average quantity of

material that is transferred from State i to State f whenever 100 transitions overall (i.e., includ-

ing all types) occur. Multiplying either ϕX(f,i) ormX(f,i) by kfi produces a quantity in which the

concentration or saturation changes are given per unit time rather than on a per-transition

basis. The corresponding mathematical formulations are

kfi�Xðf ; iÞ ¼

XN

n¼1

ATCðf ; i; nÞ

XN

n¼1

n � ATCðf ; i; nÞ

XN

n¼1

AXðf ; i; nÞ

XN

n¼1

ATCðf ; i; nÞ
¼

XN

n¼1

AXðf ; i; nÞ

XN

n¼1

n � ATCðf ; i; nÞ
ð8Þ

and

kfimXðf ; iÞ ¼ 100

XN

n¼1

ATCðf ; i; nÞ

XN

n¼1

n � ATCðf ; i; nÞ
�

XN

n¼1

AXðf ; i; nÞ

X10

f¼1

X10

i¼1

ð1 � dfiÞ
XN

n¼1

ATCðf ; i; nÞ
: ð9Þ

To distinguish the influence of this rescaling process, we refer to unweighted coefficients

[i.e., Eq (6)] as intrinsic coefficient values, while those listed in Eqs (7)–(9) are called weighted

coefficient values.

For completeness, we acknowledge without further consideration still another class of coef-

ficients, which is representative of asymmetry between pairs of transitions A!B and B!A.

This recognizes that the rate, probability and flux coefficients (and the associated weighted val-

ues) for a given transition need not have the same values as those for the reverse transition.

Influence of algebraic sign of Hb-component on transition flux amplitude

In Eq (5), the increments for all of the A arrays except ATC are defined as a difference between

the concentration or saturation values at two identified time frames. From the way the Hb

states are defined (see Fig 1, Table 1), it follows that for each component of the Hb signal some

transition types produce only positive increments, others only negative ones, and others a mix-

ture of positive and negative increments. This mixture produces different feature characteris-

tics whose interpretation is aided by the following understandings.

The algebraic signs associated with different transition types are coded as colored regions

in Fig 2. The dark blue color indicates transitions from a positive (i.e., greater than the tempo-

ral mean value) to a negative value, in which case the concentration or saturation must
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decrease; while yellow indicates transitions from negative to positive values, so that concentra-

tion or saturation must increase. The light-blue color corresponds to transitions from one

Fig 2. Relation between algebraic signs of pre- and post-transition ΔHb values, for each component of the Hb signal. Numbering along figure edges reflects the

periodicity of the Hb-state sequence (see Fig 1). Numbers along edges of colored bounding boxes indicate the pre- and post-transition states (along the horizontal and

vertical edges, respectively), for each component: red = ΔoxyHb, dark blue = ΔdeoxyHb, green = ΔtotalHb, light blue = ΔHbO2Exc, magenta = ΔHbO2Sat. Solid-block

colors indicate: light blue = (-)!(-) transitions, dark blue = (+)!(-), olive = (+)!(+), yellow = (-)!(+).

https://doi.org/10.1371/journal.pone.0198210.g002
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negative value to another, in which case the Hb-component value will increase in some transi-

tions and decrease in others; and the same is true for the olive-colored regions, which corre-

spond to transitions from one positive value to another. The color-coded boundary squares in

Fig 2 show which portions of the checkerboard pattern correspond to the algebraic-sign distri-

butions for each Hb component. Note that the regions inside the colored boundary squares

have the same row and column assignments. Thus the cell in the upper right corner of each

boundary square corresponds to State-10! State-1 transitions. As is shown in Results, there

are features in the associated coefficient-flux maps that are spatially correlated with those in

Fig 2.

Separate from these feature characteristics, it is helpful to appreciate the influence that

changes in state-dependent flux amplitudes will have on the appearance of transition-parame-

ter maps. For instance, transitions that must entail a change in algebraic sign will identify the

net amplitude of the concentration or saturation change, but not the magnitude of the hemo-

globin signal relative to its temporal mean value. In contrast, transitions in which the algebraic

sign does not change will produce net values that constitute sums of cancelations. As a result,

these net values may be either positive or negative, and the observed algebraic sign will indicate

whether the pre- or post-transition value is farther from the temporal mean.

Functional interpretation of Hb-state transitions

While the described mathematical treatments do not require assignment of a particular

sequence to the state numbering system, we nevertheless have arranged these to reflect a gradi-

ent of successively greater degrees of metabolic demand in relation to blood supply with vascu-

lar compensation. Contrasting examples of this response are the transitions between states 5

and 10 and between 4 and 9. For instance, the 10!5 transition identifies a hyperemic

response, but one that is insufficient to meet demand, leading the levels of ΔoxyHb and

ΔHbO2Sat to fall below their temporal mean values while the levels of ΔHbO2Exc and Δdeox-

yHb rise. Conversely, the 4!9 transition principally reflects a similarly hyperemic response,

but one that more than meets metabolic demand, leading ΔHbO2Exc values to fall while Δox-

yHb, ΔtotalHb, and ΔHbO2Sat levels rise. The associated reciprocal transitions reflect

responses in compensation from hyperemia. It deserves mention that not specifically reflected

in this representation are explicit sensitivities of these parameters to changes in blood flow sep-

arate from variations in tissue metabolic oxygen demand [27]. Nevertheless, as variations in

these factors will affect the oxygen supply-demand balance, the finite-state formulation pre-

sented is expected to prove sensitive to factors influencing these quantities [see S4 Appendix

for an expanded description of the physiological interpretation of state transitions].

Evaluation of diagnostic potential of transition-associated parameters

Here we use the generic symbol Yfi to denote any of the transition-related quantities—Pfi, kfi,
ϕX(f,i),mX(f,i), or the related products kfiϕX(f,i), kfimX(f,i)—that are subsequently evaluated as

diagnostic indicators for breast cancer. For any transition type, each study subject has distinct

values of Yfi for the left and right breast (i.e., Yfil and Yfir, respectively). To minimize contribu-

tions to inter-subject variability by factors unrelated to the presence of disease, we consider the

relative percent differences between Yfil and Yfir as diagnostic-metric candidates.

In view of the demonstrational nature of the diagnostic-potential computations reported

here, and the small number of subjects in the breast-cancer group (N = 18), we do not consider

multiple-category or multiple-factor analyses such as would be appropriate for a large clinical

trial. Instead, data for all breast-cancer subjects are combined to form one group. Because the

18 subjects with cancer comprise 12 with a tumor of the left breast and 6 who have it in the
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right, combining them necessitates performing an adjustment to minimize confounding of

tumor effects with any intrinsic left-right asymmetries that may be present. Accordingly, the

diagnostic metrics are generated in the following manner. For subjects known to have left-

breast tumors (and for subjects in the non-cancer group):

ZfiðjÞ ¼ 100
Yl
fiðjÞ � Y

r
fiðjÞ

Yr
fiðjÞ

; ð10Þ

where j is the subject index. For subjects known to have right-breast tumors,

ZfiðjÞ ¼ 100
½Yr

fiðjÞ � �Yr
fiNC þ

�Yl
fiNC� � ½Yl

fiðjÞ � �Yl
fiNC þ

�Yr
fiNC�

Yl
fiðjÞ � �Yl

fiNC þ
�Yr
fiNC

; ð11Þ

where �Yl
fiNC and �Yr

fiNC denote quantities averaged over all subjects in the non-cancer group.

The linear adjustment operations in Eq (11) have the effect of correcting the difference

between parameter values in the tumor-bearing and unaffected breasts for left-right biases that

are not related to the presence of disease. As such, they are based on a plausible assumption

that the net inter-breast difference is, to first order, the sum of background-asymmetry and

tumor-related contributions, and that the magnitude of the former is not itself strongly dis-

ease-dependent.

For each combination of transition-related parameter and transition type, the sets of Zfi val-

ues for breast-cancer and non-cancer subjects were the input to a receiver operator character-

istic (ROC) analysis [16], with the area-under-curve (AUC) parameter taken as our index of

overall diagnostic accuracy [28].

Diffuse optical tomography

Optical time series measures of the breast were acquired using a previously reported, custom-

made, high density tomography system [14]. Notable capabilities of this unit include the capac-

ity to examine both breasts simultaneously while, if desired, exposing the breast to concurrent

defined viscoelastic deformations. Illumination was achieved by employing a dual-wavelength

laser source (760, 830 nm) that is time-multiplexed to allow for simultaneous recording of

light intensities from all elements of the sensing array. In all, each sensing head contains 64

dual-wavelength sources and 32 detector elements that are evenly divided within a two-stage

arrangement.

Subject preparation

System operation supports examination of the breast while the subject is comfortably seated.

The top portion of the sensing array has a hinged arrangement enabling its adjustment to

allow for controlled contact in an anatomically conforming manner. In all, sensing elements

are arranged to support essentially a full circumferential measurement. Informed consent was

obtained from all subjects prior to enrollment, in accordance with Project 267113–10 of the

SUNY Downstate Medical Center Institutional Review Board, which approved this study. In

all, data from 63 subjects were explored, 18 with confirmed breast cancer (6-right breast,

12-left breast, average tumor size ~2.7 cm, range 0.5–6 cm) and 45 non-cancer subjects, 23 of

whom had evidence of various types of non-malignant pathologies in either breast. A more

detailed description of enrolled subjects is given in [16]. It deserves mention that findings

reported here involve the same subject groups as in [16] and exploration of the same data. Dif-

ferent are the methodologies applied for data analysis.
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Data collection

Following initial setup, automated system calibration was performed to identify optimal gain

settings. Subsequently, resting-state measures were acquired for a period lasting ~5–10

minutes.

Data preprocessing

Data were screened for evidence of degradation of signal quality caused by excessive signal

attenuation by very large breasts or by poor skin-contact for very small breasts, using methods

previously described [16]. To avoid introducing bilateral signal bias, channels excluded from

one breast were also excluded from the other, resulting in symmetric data sets. Also, to avoid

biases from undersampling, only measures from women that included at least 60% of all data

channels were considered. Experience showed that operating limits are breasts having cup

sizes varying from B to DD.

3D image reconstruction

Tomographic reconstructions were achieved by first normalizing measured signal intensities

to the respective temporal mean values of each data channel, then solving a system of linear

equations generated within a modified perturbation formulation that is based on solutions to

the diffusion equation [29,30]. Computed wavelength-dependent absorption coefficient values

were subsequently transformed to yield spatial maps of the time-varying independent (i.e.,
oxygenated and deoxygenated) components of the hemoglobin signal. Using the MATLAB

‘detrend’ command, a linear detrending operation was subsequently applied, across the time

dimension, to the reconstructed ΔoxyHb and ΔdeoxyHb images, to remove any long-term

drift (which, under the conditions of measurement, is more likely instrumental than of biolog-

ical origin) that may be present in the data while retaining fluctuations on shorter time scales.

The mathematical relationships given above (Methods, Section 1), were used to compute val-

ues of the dependent Hb components from the detrended ΔoxyHb and ΔdeoxyHb measures.

Organization of reported findings

In the following section we present a representative finding whose gross features have aided in

motivating adoption of the finite-state methodology described in Methods, and expand on

group-level findings obtained from the different subject groups. The latter is divided into two

sub-sections: findings from analysis of State-transitions, and those from Hb-dependent com-

ponent transitions. Finally, we report selected findings from ROC analysis that supports evi-

dence that the derived coefficients may serve as useful markers for disease.

Results

Data shown in Fig 3 are representative plots of the voxel-dependent, time-varying Hb signal,

displayed in the Fig 1 coordinate system, that includes contributions from the entire breast

and measurement period. Seen are clouds of points, with the frequency of occurrence of each

paired (ΔdeoxyHb, ΔoxyHb) combination indicated by the color scale. Inspection reveals dis-

tinct ellipsoidal distributions whose details strongly suggest sensitivity to the presence of

disease.

While the overall patterns seen might suggest consideration of ways to quantify the shapes

of the distributions, our focus is instead directed to the expectation that temporal variability in

the actions of feedback mechanisms will serve to drive Hb-component values from one

Hemoglobin state-flux: A finite-state model representation of the hemoglobin signal

PLOS ONE | https://doi.org/10.1371/journal.pone.0198210 June 8, 2018 13 / 39

https://doi.org/10.1371/journal.pone.0198210


Fig 3. Resting-state ΔoxyHb and ΔdeoxyHb values for affected and unaffected breasts. Plots of superimposed whole-

breast voxel trajectories of ΔoxyHb and ΔdeoxyHb for (a) unaffected and (b) contralateral cancerous breast from a

representative clinical-study subject. [Subject was 50 y/o, BMI = 44, C size breast, with a 4 cm left-breast intraductal

carcinoma].

https://doi.org/10.1371/journal.pone.0198210.g003
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functional state to another. Accordingly, our attention is directed to quantifying features asso-

ciated with such transitions.

Hb state-transition coefficients

Coefficient maps of state transition rate values. Fig 4 shows the group-mean values of the

rate constants for inter-state transitions [Eq (3), multiplied by the data sampling rate] for women

with breast cancer. Recall that each square cell’s column assignment identifies the state that is

transitioned from while the row assignment denotes the state that is transitioned to. Fig 4(A)

shows the rate-constant values obtained from tumor-bearing breasts (T), 4(b) the difference in

values between affected and unaffected (U) breasts (T–U) and 4(c) p-values obtained from Stu-

dent t-tests comparing the 4(b) data to the corresponding inter-breast differences [left-minus-

right (L–R)] for the subjects without breast cancer (i.e., unpaired tests comparing L–R vs. T–U).

As indicated by the color contrast, Fig 4(A) shows that transition rate constants for affected

breasts vary over a range of ~1.20–1.75 second-1, depending on the transition pair. Closer exami-

nation reveals that the rate constants are preferentially elevated for transitions originating from

States 3 and 8, and preferentially suppressed for those originating from States 4 and 9. Also seen

is the apparent absence of an equivalent bias involving transitions into a given state (i.e., row fea-

tures), indicating that rate constants involving reciprocal pairs of transitions are asymmetric.

A more careful inspection of Fig 4(A) reveals a distinct influence of the presence or absence

of hyperemia on transition rate constants. The largest values are those for transitions from

State 3 into States 5–9, and from State 8 into States 10 and 1–4. Common to these state transi-

tions is a change in the algebraic sign of ΔtotalHb, suggesting sensitivity to hyperemia. Differ-

ent from this are transitions from States 4 and 9. Here we find that those which do not involve

an associated hyperemia (i.e., from State 4 into States 10 and 1–4, and from State 9 into States

5–8), have the smallest rate constant values overall.

Shown in Fig 4(B) are the differences between the group-level rate constant values for

affected and unaffected breasts. Inspection reveals coefficient values that are preferentially ele-

vated by the presence of disease and others that are reduced. Among the former, and most evi-

dent, are all transitions from States 2 and 7 into the others. Transition rates that are reduced in

affected breasts principally include those originating from States 5 and 10. In Fig 4(C), we see

that group differences are mainly clustered among transitions from States 1–3 and from States

6–8. Not explicitly revealed in Fig 4(C) is the additional finding that, for every transition type

showing a significant inter-group difference, the inter-breast difference for the breast-cancer

group is greater than that for the non-cancer group.

Taken together, these findings reveal two principal disease-dependent contrast features.

First is the finding of elevated overall transition rates in affected breasts. We interpret this as

consistent with the general observation that metabolic rates in tumors are elevated. Second,

this behavior appears preferentially biased towards specific classes of transitions, in a manner

suggestive of a compensatory response. In support of the latter is the finding that while transi-

tions from States 3 and 8 have the largest values for either T or U breasts, the impact of disease

appears greatest on either side of these transitions (i.e., largest positive and negative bias for

transitions from States 2 and 7 and from 5 and 10, respectively). We also recognize that

because measures were obtained under substantially steady-state conditions, a bias in one

direction requires an opposing bias to not disturb the temporal mean value. However, given

the many degrees of freedom associated with a ten-state model, it would seem evident that

there are multiple ways that such a balance could be achieved, suggesting that a ‘salt-and-pep-

per’ pattern might be preferred in the absence of specific driving factors. The finding of dis-

tinctive patterns suggests that disease-dependent influences are present.
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The transition-rate patterns for the L, R and U breast groupings are not explicitly shown,

owing to space limitations and to their qualitative similarity to Fig 4(A). As an alternative, in

Table 2 we have computed two quantitative indices of dissimilarity and have applied these to

highlight group-level differences among the overall amplitudes and patterns of the measured

coefficients. The first is a normalized root mean squared difference (nRMSD; a value of 0 indi-

cates exact equality) between the coefficient amplitudes in the transition rate-constant maps

(excluding the main diagonal), comparing either T and U or various pairings of unaffected

breasts (i.e., L and R, L and U, R and U). The second is a measure of the spatial correlation of

patterns observed between the rate-constant maps for the same pairings. To obtain a quantita-

tive measure of the overall impact of breast cancer on rate constants, we have compared the

mean value of the nRMSD and correlation for the three control group pairings (i.e., L and R, L

and U, R and U) to the corresponding indices for T–U, in both cases using the t-score as a con-

venient indicator of group difference. This is intended to aid interpretation by presenting the

contrast between tumor-unaffected and unaffected-unaffected values in terms of a familiar

dimensionless unit, and not for the purpose of statistical testing.

Fig 4. Coefficient maps of transition rate constants (k) and their comparison among subject groups. Plotted coefficients are computed by multiplying the Eq (3)

result by the 1.8-Hz data sampling rate. (a): Transition rate constants (units are s-1) for the affected breast of subjects with unilateral breast cancer; (b): difference in

coefficient values between tumor-bearing and unaffected contralateral breast; (c): p-values for (unpaired) t-tests comparing the inter-breast differences in coefficient

values for subjects with and without breast cancer.

https://doi.org/10.1371/journal.pone.0198210.g004

Table 2. Analysis of group-level transition-parameter values for different subject-breast pairings.

Dissimilarity Index Transition Parameter x: T,U y: mean(L,R; L,U; R,U) z: SD(L,R; L,U; R,U) (x–y)/z(a

nRMSD k 0.063 0.029 0.012 2.81

P 0.630 0.264 0.123 2.96

ϕ 0.479–0.710 0.187–0.316 0.098–0.148 2.61–2.96

m 0.778–0.924 0.343–0.438 0.166–0.210 2.28–2.62

Correlation k 0.853 0.965 0.026 -4.27

P 0.897 0.978 0.018 -4.46

ϕ 0.988–0.996 0.997–0.999 0.00086–0.0028 -2.78 –-5.81

m 0.952–0.975 0.983–0.993 0.0050–0.012 -2.61 –-4.29

Exact equality would produce nRMSD = 0 and correlation = 1. nRMSD is defined as: nRMSDða; bÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
ða � bÞ

2
q

=

ffiffiffiffiffiffiffiffiffiffiffiffiX
a2

q

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiX
b

2
q� �.

2

� �

, where ‘α’ and ‘β’

are the sets of 90 coefficient values in the (main-diagonal-excluded) 10×10 maps for two selected subject-breast groups.

a) This dimensionless index is the t-score of the nRMSD or correlation value for the T,U pairing, in comparison to the mean and standard deviation of all the pairings of

non-tumor breasts.

https://doi.org/10.1371/journal.pone.0198210.t002
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The correlation values obtained for measures of k are r = 0.853 for the T–U comparison,

and r = 0.965 for the mean of the control pairings (SD = 0.026). While the former is notably

reduced compared to the latter, indicating disease sensitivity, the amplitude patterns of transi-

tion rates over all state pairings among the breasts in either subject group is, nevertheless,

strongly correlated. This is not overly surprising as in these instances the tabulated values are

derived from data that was concurrently acquired from both breasts of the same subjects. Con-

sequently, it is noteworthy that the L–U and R–U comparisons, involving data for two separate

groups of subjects, also yield higher correlations than does the T–U case. The same pattern of

results was found in the nRMSD values, which is larger (i.e., farther from zero, indicating less

similarity) for the T–U case than for any of the control pairings, whether these involved com-

parisons of data from the same subjects (L–R) or from two distinct subject groups (L–U and

R–U). The t-score values for nRMSD and correlation are 2.81 and -4.27, respectively, indicat-

ing that the impact of breast tumors is several times larger than the other sources of variance.

Coefficient maps of transition probability constants (P). Shown in Fig 5 are findings

having the same format as in Fig 4, but for measures of State transition probability [Eq (1)]. A

brief comparison of these to the corresponding parameter maps in Fig 4 reveals that the transi-

tion-probability and transition rate-constant patterns seen are weakly correlated and hence

substantially independent. This finding is not surprising, as the prevalence and rate of change

of behavior are independent in many systems. While many feature particulars are present,

here we limit our consideration to only a few.

Most striking is the substantial symmetry among reciprocal pairs of transitions, over a

larger range of values than is observed for the transition rate constants. Regions having the

lowest probabilities correspond to transitions to and from States 1–3 and 6–8. Also seen is evi-

dence of biases in the probabilities of transitions between states. For example, transitions either

to or from States 3 and 8 are uniformly less probable than those involving adjacent states on

either side (2 and 4, 7 and 9), producing a striped appearance. Having significantly higher, but

also less uniform, probabilities are transitions to or from States 4, 5 and 9, 10. The net result of

these biases is to produce a transition probability map that bears some similarity to the pattern

of algebraic signs for transition-associated changes in ΔdeoxyHb concentration depicted in Fig

2. More specifically, it is seen that those transitions having the largest and smallest amplitudes

mainly coincide with the regions that undergo a change in the algebraic sign of ΔdeoxyHb (yel-

low and navy-blue regions of Fig 2).

Fig 5. Coefficient maps of transition probabilities (P) and their comparison among subject groups. Plotted transition probabilities (units are percent) are computed

using Eq (1). (a): data for tumor-bearing breast; (b): difference between tumor-bearing and contralateral, unaffected breast; (c): p-values for (unpaired) t-tests comparing

the inter-breast differences for subjects with and without breast cancer.

https://doi.org/10.1371/journal.pone.0198210.g005
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Similar to the difference between transition rate constants for affected and unaffected

breasts [Fig 4(B)], results in Fig 5(B) shows that the probabilities of particular transitions can

be either elevated or reduced in the T breast in comparison to U. One interesting difference

between the rate and probability T–U maps is that the pattern of the latter appears clustered

about three groups of transitions. Having reduced amplitudes are transitions involving State 2

with either 1 or 3 and those involving State 7 with either 6 or 8, while those having elevated

amplitudes involve transitions between either State 4 or 5 and either 9 or 10, as well as directly

between 4 and 5 or 9 and 10.

Included in Table 2 are values for the two inter-group similarity metrics described in the

preceding section, computed for the transition-probability maps. The overall trends in these

findings are similar to those for the rate constant measures. That breast cancer has only a mod-

est effect on these indices for either k or P is not surprising, given that the average partial vol-

ume of tumor in affected breasts is on the order of 3% or less. Even so, the T–U nRMSD is

appreciably larger than the mean value for the unaffected-breast pairings (t = 2.96 (P) and 2.81

(k)), and the correlation is substantially lower (t = -4.46 (P) and -4.27 (k)) for both types of

coefficients.

While these findings indicate that the presence of disease does not grossly distort the men-

tioned coefficient values, evidence obtained from group difference measures for the T–U pair-

ings [Fig 4(B) and Fig 5(B)] does reveal distinct biases in coefficient values among selected

transition types. Notable here is the evidence that the effect of disease on the amplitude of k is

substantially independent of its impact on P.

Fig 5(C) identifies those transitions for which the inter-breast probability difference is sig-

nificantly different (p< 0.05) between the subject groups, using the same criterion applied in

Fig 4(C). Inspection reveals that features that are significant mainly are those that have the

largest group-amplitude differences. As in the rate-constant case, for every significant inter-

group difference in Fig 5(C), the inter-breast difference for the breast-cancer group is larger

than that for the non-cancer group.

Hb-state mean amplitude values. Additional state-dependent quantities that can be

accessed via the applied methodology are measures of the mean Hb-component values for a

given state, for the different subject groups. An example of these finding is shown in Fig 6,

where the group-mean ΔoxyHb and ΔdeoxyHb values are plotted, for the affected (red) and

unaffected (blue) breasts of affected women. Most evident is the shape of the distributions

(mainly elliptical) and the obvious difference in their amplitudes. That the latter is greater for

affected breasts is consistent with general finding of enhanced angiogenesis in tumors [15].

Also, as noted, the elongated trend in the direction close to that of the HbO2Exc axis for

affected breasts indicates a disease bias that reflects the known degraded ability of the vascula-

ture of tumors to maintain supply-demand balance by modulating blood volume to match

changes in tissue oxygen consumption [31]. This trend is also consistent with the general find-

ing of a greater degree of desaturation of Hb in tumors [31].

A more quantitative examination of the phenomena revealed by the plot is presented in Fig

7. Here we begin [Fig 7(A)] by replotting the Fig 6 data points but, instead of connecting adja-

cent points with line segments to emphasize the elliptical patterns, we add line segments con-

necting each data point to the origin of the coordinate system. In this way, a property not

obvious by inspection of Fig 6 is revealed: the angles between the red and blue line segments

are close to zero for States 2, 3, 7 and 8, larger for States 1, 5, 6 and 10, and largest of all for

States 4 and 9.

To evaluate this trend, we have investigated the values of the plotted points’ other Hb-signal

components (i.e., their projections onto the other axes shown in Fig 1). The most informative

result, plotted in Fig 7(B), is obtained by computing the ratio of ΔHbO2Exc to ΔtotalHb for
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each of the states (as previously noted, these are the components that are the most directly

affected by the presence of a tumor: modulation of ΔtotalHb occurs to a proportionally greater

extent in the unaffected breast, and of ΔHbO2Exc in the affected one). It is seen that for every

state that has an angle discrepancy noticeable by inspection in Fig 7(A) (i.e., States 1, 4, 5, 6, 9

and 10), the absolute value of the ratio is larger for the tumor breast, which is to say that the

magnitude of ΔtotalHb “response” relative to the magnitude of ΔHbO2Exc “stimulus” is

smaller in the affected than in the unaffected breast [p< 1×10−4, for all listed states (paired t-

tests)]. This finding is consistent with the known tendency of tumors to have a reduced

Fig 6. Hb-state dependence of mean values of ΔoxyHb, ΔdeoxyHb concentration. Plotted data points are average

values across all time frames in each subject’s volumetric image time series and across all subjects in the breast-cancer

group. T = tumor-bearing breast; U = contralateral, unaffected breast.

https://doi.org/10.1371/journal.pone.0198210.g006

Fig 7. Replots of group-mean ΔoxyHb vs. ΔdeoxyHb data (Fig 6) for subjects with breast cancer. (a) Each

(ΔdeoxyHb,ΔoxyHb) data point (units are moles-L-1) is joined to the origin by a line segment, to emphasize the

angular discrepancies between T (red) and U (blue) values. (b) Plot of the ratio (dimensionless) of each 7(a) data

point’s projections onto the ΔHbO2Exc and ΔtotalHb axes (see Fig 1), showing the tendency of the T breast to mount a

relatively smaller blood-volume response to changes in tissue oxygen demand.

https://doi.org/10.1371/journal.pone.0198210.g007
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capacity to regulate their blood supply to match changes in ambient oxygen demand [15]. We

find it noteworthy that this effect is largest for States 4 and 9, which most closely represent the

condition that supply is less(more) than adequate to meet demand, so that ΔoxyHb, ΔtotalHb

and ΔHbO2Sat all have the same algebraic sign, and ΔdeoxyHb and ΔHbO2Exc have the oppo-

site sign. Consequently, these states are the ones in which reduced capability of tumor-breast

vasculature to match changes in blood supply to changes in oxygen demand would be most

apparent, which is what we observe.

Hb-state partial volume values. A simple measure of state dependence is the time-aver-

age volume fraction of tissue that is occupied by a given state. This can be determined by

counting the number of image voxels that reside in each state and expressing these quantities

as the relative fraction (percentage) of the total volume, averaged over time. Fig 8 shows the

ten states’ volume fractions (in units of percent) for the different groupings of study subject

and breast-cancer status. Here we have separately plotted group-mean values for the L and R

breasts of control subjects (N = 45), and for the T and U breasts of affected subjects (N = 18).

Inspection reveals that the volume fraction for States 1–3 and 6–8 are reduced in T, while

States 4, 5 and 9, 10 have increased values. We also note that while there is evidence of an

intrinsic left-right bias in unaffected subjects, the p-values associated with this trend are con-

sistently higher (i.e., lower statistical significance) than the findings obtained from correspond-

ing inter-breast comparison for the affected subjects, even though the latter group contains

less than half the number of subjects. We also note the diverse composition of the control

group, which includes women who have no history of any breast pathology (N = 22) and a sim-

ilar number of aged-matched subjects who have a variety of documented breast pathologies

other than overt malignancy. This indicates that the observed bias exhibits disease specificity.

Separate from appreciation of the feature space of the volume fraction measures is a more

quantitative understanding of relationships between these measures and the previously

Fig 8. Percentage of image volume occupied by Hb states. Percentage of image volume in each Hb state, averaged

across all time frames in each subject’s volumetric image time series and across all subjects in the indicated groups.

Annotations are t-test p-values for comparisons of mean values for the left (L) and right (R) breasts (non-cancer

subjects) and of the tumor (T) and unaffected (U) breasts (breast-cancer subjects).

https://doi.org/10.1371/journal.pone.0198210.g008
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described State transition parameters (i.e., transition rates and probability). For instance, com-

paring the Fig 8 volume-fraction distribution to the pattern of transition probabilities in Fig 5

reveals that trends in the former appear to determine some of the features of the latter; e.g.,
that the lowest probability is found for transitions from/to States 3 and 8, and the largest is

seen for transitions from/to States 4 and 9. However, there also are features of Fig 5 that would

not be easily predicted from inspection of Fig 8, such as the greater probability for transitions

between 4 and 10 or between 5 and 9 than for ones directly between 4 and 9. It is worth consid-

ering what may be the form of the function that transforms the 2D probability map into the

1D volume fractions, and how consistent it is across the four subject-breast pairings.

The simplest assumption is direct proportionality between transition probability and vol-

ume fraction, with the rate constants serving as the constants of proportionality. Thus, the vol-

ume fraction for State j would be equal to

Vj ¼ K
X10

i¼1

Pij
kij
; K �

100

X10

j¼1

X10

i¼1

Pij
kij

; ð12Þ

where the normalization constant K ensures that the quantity on the right-hand side of Eq (12)

is equal to 100 when summed over all j (as is the sum of the Vjs, by definition). It is found (not

shown) that there is excellent agreement between the true and computed volume fractions

(i.e., left- and right-hand sides of Eq (12), with a mean relative percent discrepancy (i.e.,

100 Vj � K
X10

i¼1

Pij
kij

 !�

Vj), of just over 1% across the four subject-breast groups. This finding

of consistency across data sets demonstrates the stability of the data transformations used to

derive the state-transition coefficients.

In addition, the observed accuracy of the Eq (12) model shows that transitions between Hb

states are first-order processes, as kinetics of any other order would lead to a different mathe-

matical relationship among k, P and V. In view of the mathematical relationship between rate

constant and mean lifetime [Eq (3)], the 1/kij factor in Eq (12) can be replaced by τij, which

leads to a compact formula relating the volume fractions of all states to the transition-probabil-

ity and mean-lifetime coefficients:

V ¼ K � diagðPTτÞ; ð13Þ

where K is the same as in Eq (12), diag(X) is a vector consisting of the main-diagonal elements

of the matrix X, and Pij and τij are the ijth elements of P and τ, respectively.

The preceding relationships noted, the added dimensions of the transition-rate and proba-

bility spaces relative to the volume fraction nevertheless provides an opportunity to appreciate

other disease-dependent biases. Of interest is the noted substantial independence of disease

impact on specific features of these transition spaces (e.g., different particular transitions are

most strongly affected in the k and P results). We contrast this finding with our previous report

that explored the same imaging data and demonstrated a prominent temporal feature from

affected breasts that is consistent with the existence of a persistent inflammatory response in

tumors in response to upregulation of NO formation [16]. While the data treatment strategy

pursued here does not support independent assessment of behaviors originating from the tis-

sue and vascular spaces, it is difficult to reconcile the evidence of differential influences on the

State spaces on the basis of only known effects of NO on the vascular space. Consequently, we

interpret this behavior as consistent with the actions that NO is known to have on the tissue
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space as well (e.g., NO is a known competitive inhibitor of oxygen binding to cytochrome c-

oxidase [32]), combined with expected compensatory effects.

To briefly summarize, in this section we have identified the principal parameters accessible

from measures of the Hb State-transitions. Comprising 2D spaces are the transition rate and

probability coefficients, whose details appear mainly independent of each other and also

appear disease-sensitive in a manner consistent with the several prominent cancer phenotypes.

An additional finding is evidence of good feature recovery (i.e., computed volume fraction)

from first-order behavior in the kinetics of the rate-weighted transition probabilities.

In the next section we present findings from measures of the Hb-component transition

flux, which represents an even more feature-rich information space.

Hb-component transition coefficients

Coefficient maps of Hb-component flux amplitudes. Shown in Fig 9 are the state-

dependent amplitudes of intrinsic transition flux [Eq (6)] for the different components of the

hemoglobin signal, computed from image time series of the breasts of control subjects

(N = 45). These quantities, which can have either positive or negative values (i.e., increased or

decreased flux), correspond to the average difference between the transition-dependent com-

ponent values in the initial time frames of pre- and post-transition time intervals. Note that

the scale for ΔHbO2Sat is expressed as change in percent, while the values for the other compo-

nents are molar quantities. Also, recall that these quantities are computed on a per-transition

basis and not over a defined time interval, and that the plotted quantities are obtained by aver-

aging over the full volume of the breast, the 5–10 minute period of observation and for all con-

trol-group subjects. Inspection of the figure reveals several prominent features.

One feature clearly present is the tendency of the amplitude changes to appear spatially cor-

related with the component-dependent algebraic sign patterns that accompany given transi-

tion types (see Fig 2). This is especially evident for the ΔtotalHb component. While application

of a simple differencing scheme can be expected to produce a pattern whose deviation from

the temporal mean is sensitive to the pattern of algebraic-sign changes corresponding to the

transitions, this is not sufficient to guarantee a smoothly varying pattern for any given

component.

The counter consideration is one where each amplitude within a specified sector [e.g., all

transitions in which the algebraic sign of the component amplitude change from positive to

negative (i.e., dark blue regions in Fig 2)], would be mainly independent of those of neighbor-

ing transition types, thus producing a “salt-and-pepper” appearance. This outcome would

have important consequences for our postulated relationships between a sequence of state

transitions and their sensitivity to intrinsic biological factors. As noted in Methods, Section 5,

the numbering sequence we have assigned to the Hb states reflects a belief that passing through

Fig 9. Intrinsic transition flux for subjects in the non-breast-cancer group. Intrinsic transition flux [i.e., average change, per transition, in concentration (units are

moles-L-1) or saturation (units are %); computed using Eq (6)] results for the control-group subjects. Graphed data are averages over the left and right breasts. Headings

denote the Hb components as indicated in Table 1. Thin solid lines separate regions according to the algebraic signs of the pre-and post-transition Hb-component

values (see Fig 2).

https://doi.org/10.1371/journal.pone.0198210.g009
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them in order traces out the compensatory hyperemic response to a hypothetical supply-

demand imbalance. Thus, transitions between adjacent states (e.g., transition 2!3) are

expected to reflect a lower degree of imbalance than are transitions involving reciprocals (e.g.,
transition 1!6). It follows that if the transition-flux pattern were to have more of the conjec-

tured salt-and-pepper appearance, it would suggest that either the assigned sequence of state

transitions does not reflect the hypothesized interpretation, or that our findings are strongly

biased by unanticipated driving factors. Conversely, we interpret the smoothly varying pat-

terns that were obtained as evidence that the assigned state transition sequence does roughly

coincide with expected gradients in supply-demand imbalance. We further note that this

understanding also holds should measures of flux be alternatively expressed on fixed-time

basis (sec-1), which is a finding that expectedly follows from appreciation that the amplitude

range for transition rates (Fig 4) is many-fold smaller than that seen for intrinsic flux (Fig 9).

For completeness we provide a quantitative summary of comparisons between the intrin-

sic-flux measures for different pairings of breast and subject group, similar to those already

considered for the rate constant and transition probability findings. Data in flux-related

nRMSD and correlation rows of Table 2 indicate that while gross trends across all parameter

transitions are highly correlated among the different groups, the range of intrinsic-flux corre-

lations for Hb components is notably lower for the T–U pairing than for any of the others, and

the nRMSD is notably larger.

Returning to Fig 9, a more granular examination of the contrast features reveals that while

amplitudes do smoothly vary, there also is evidence that different components of the hemoglo-

bin signal exhibit preferred transition types. To gain a better understanding as to the factors

that might serve to facilitate these preferences, we have made separate examinations of the

amplitudes of each component during the pre-transition and post-transition time frames, for

measures obtained from control subjects. These results are shown in Fig 10.

Plotted in Fig 10(A) is the average amplitude, relative to the temporal mean, of the concen-

tration or saturation at the beginning of the pre-transition time interval, while Fig 10(B) shows

Fig 10. Average ΔHb amplitudes in the pre- and post-transition image time frames for data in Fig 9. (a) Average ΔHb amplitude in the pre-transition state encoded

by the column index, given that the transition that ultimately occurs is to the State encoded by the row index. (b) Average ΔHb amplitude in the post-transition state

encoded by the row index, given that the transition that ultimately occurs is from the State encoded by the column index. Headings denote the Hb components as

indicated in Table 1; units are percent for ‘s’ and moles-L-1 for all others. Thin solid lines separate regions according to the algebraic signs of the pre-and post-transition

Hb-component values (see Fig 2).

https://doi.org/10.1371/journal.pone.0198210.g010
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the corresponding values at the start of the post-transition interval. Inspection reveals two

prominent features. First, the pattern of amplitudes differs for the different components. Also

evident is that, while the corresponding pre–and post–transition state amplitude maps appear

mainly as conjugate pairs (i.e., each is nearly the transpose of the other), there is a notable rela-

tionship between regions in the coefficient maps having the greatest deviation from the mean,

and the associated flux amplitude identified in Fig 9. In particular, we observe that large-ampli-

tude features in the former category are, in every instance, roughly spatially correlated with

regions in the latter that have reduced flux amplitudes.

The observed relationship between fluxes and the pre- and post-transition amplitudes

invites a comparison to a body of well-established theory on factors influencing thermody-

namics and kinetics of chemical reactions, and, in particular, the influence of enzymatic trans-

formations. For instance, reactions that have low potential energy barriers tend to occur more

often than those with higher barriers. It follows that the patterns of high and low flux regions

seen in Fig 9 exist because the pre–and post–transition amplitudes are proportional to “intrin-

sic energy barriers” that serve to produce these patterns. We present this interpretation in the

context of an analogy, with the understanding that the true mechanism is likely complex and

dependent on a host of factors that may or may not explicitly depend on the suggested mecha-

nism. Continuing with the chemical reaction analogy, the relation considered here (between

intrinsic fluxes and the pre- and post-transition concentrations) calls to mind yet another phe-

nomenon relevant to chemical reactions, the property of mass action.

The Law of Mass Action states that the rate of a chemical reaction is directly proportional to

the product of the concentrations (activities) of its reactants. Extension of this understanding to

the current study suggests that the observed transition fluxes are in some way proportional to

the amplitude patterns shown in Fig 10. This hypothesis can be evaluated by regressing the

intrinsic transition flux against the corresponding change in average amplitude (i.e., concentra-

tion or saturation) between the pre-transition and post-transition states. These results are in

shown in Table 3. Inspection shows that these quantities are strongly correlated, but differ in

their slopes (ranges for the corresponding intercepts are 10−6–10−5 for ΔHbO2Sat and 10−12–

10−10 for the others, and in no case is the intercept significantly different from zero).

The existence of a linear dependence implies that the fluxes are driven by first-order pro-

cesses. Nevertheless, as noted, because the applied methodology does not distinguish among

Table 3. Linear regression parameters for fits of intrinsic flux to average difference between post- and pre-transition ΔHb levels.

Parameter Intrinsic flux regressed on Average concentration (or saturation) difference

L R T U x: mean(L,R,U) y: std(L,R,U) (T–x)/y

Correlation ΔE 0.969 0.969 0.981 0.968 0.968 0.00065 19.5

ΔD 0.965 0.966 0.977 0.970 0.967 0.0028 3.5

ΔT 0.994 0.994 0.996 0.993 0.994 0.00070 3.9

ΔS 0.980 0.981 0.986 0.983 0.981 0.0016 3.02

ΔO 0.953 0.959 0.965 0.965 0.959 0.0063 1.03

slope ΔE 0.86 0.84 0.92 0.82 0.84 0.022 3.7

ΔD 0.85 0.83 0.90 0.83 0.84 0.011 5.3

ΔT 0.54 0.54 0.60 0.56 0.55 0.014 4.1

ΔS 0.93 0.91 0.95 0.91 0.91 0.010 3.9

ΔO 0.65 0.64 0.73 0.63 0.64 0.0086 10.9

Linear-regression slope and correlation-coefficient values obtained from fitting values for intrinsic flux to the average differences between the ΔHb levels in the post-

transition and pre-transition states, for each Hb component.

https://doi.org/10.1371/journal.pone.0198210.t003
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contributions from the principal tissue spaces to the observed behaviors, it seems likely that

the identified order is an amalgam of more complex behaviors that actually do occur in these

spaces. While this trend is seen in both subject groups, the finding of elevated slope values

across all components of the hemoglobin signal for the affected breast of the cancer group

indicates a disease bias. Further, the observation that the ΔHbO2Sat intrinsic flux is most sensi-

tive to the gradient (i.e., slope is closest to unity) suggests that changes in blood oxygenation

are favored over changes in blood volume to achieve steady-state supply-demand balance. This

finding is also consistent with the qualitatively similar behavior associated with the ‘stimulus-

response’ trend identified in Fig 7. Different here, however, is the added finding that driving

this bias is a concentration dependence consistent with a first-order process.

Influence of disease on pre- and post-transition component amplitudes. To gain addi-

tional understanding of the observed disease bias on what appears as a mass-action effect, we

have computed the inter-breast relative differences for both the pre- and post-transition com-

ponent amplitudes, and have compared these relative differences across subject groups. The

full comparison generates two parameter maps (one for the pre- and one for the post-transi-

tion amplitudes) for each component and subject group, and for brevity we limit our presenta-

tion of findings to only the ΔHbO2Sat component. These results are shown in Fig 11.

Inspection reveals several prominent findings.

The pattern of features in Fig 11 differs qualitatively from those seen in any of the other fea-

ture maps. At the grossest level of inspection, we find that each of the identified parameter

spaces [(i.e., State transition rate constants (Fig 4) and probabilities (Fig 5), intrinsic flux (Fig

9), pre- and post-transition component amplitudes (Fig 10) and the associated sensitivities to

disease (Fig 11)] appear mainly independent of each other, especially at the level of individual

State-component transitions. This finding is striking and strongly suggests that the composite

of intrinsic driving factors that serve to maintain steady-state supply-demand balance in tissue

exhibits differential sensitivity to each of the elements of the hemoglobin signal. However, the

fact that three of these components, namely ΔHbO2Sat, ΔtotalHb and ΔHbO2Exc, are not

independent of the amplitudes of ΔdeoxyHb and ΔoxyHb, suggests a degree of fine tuning

Fig 11. Impact of breast tumor on pre- and post-transition ΔHbO2Sat amplitudes. Relative percent difference (dimensionless) between the (left) pre-transition and

(right) post-transition ΔHbO2Sat amplitudes, comparing the tumor-bearing and unaffected breasts of subjects in the breast-cancer group.

https://doi.org/10.1371/journal.pone.0198210.g011
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that, while grossly evident from the understanding that modulation of blood delivery to tissue

is continuous, has nevertheless been difficult to quantify in the context of specifically observ-

able parameters.

Returning to the details of the parameter maps in Fig 11, inspection reveals additional fea-

tures that warrant comment. In the results for the breast-cancer subjects, we observe that tran-

sitions to and from States 4, 5 and 9, 10 are the ones exhibiting the largest inter-breast relative

difference. This shows that the pre- and post-transition amplitudes of these quantities have the

greatest sensitivity to the presence of disease. Having the lowest disease sensitivity are transi-

tions between States 2 and 7. Not shown are grossly similar findings involving patterns seen

for the other Hb components. Thus we find instances where the response to disease varies

from a more general influence on a class of transitions to one where the absence of influence is

mainly limited to a single transition type. Additionally, the observation that essentially all met-

ric values listed in Fig 11 are positive indicates that, similar to the findings for transition rates

(Fig 4) and consistent with the general phenomena of elevated metabolic rates in tumors, flux

rates are also elevated in the tumor bearing-breast.

Hb-flux coefficient trends among Hb components. While the above findings serve to

identify a relative independence of responses across the different feature spaces for individual

Hb components or States, the high dimensionality makes it is difficult to appreciate specific

trends among the various classes of information. Should such trends lend themselves to defin-

ing dependencies that are amenable to simplified measures, they could have the potential to

serve as concise markers of disease. [A brief examination of this is considered in S5 Appendix.]

Of note here is a demonstration that, while the previously suggested simplified measures of the

data clouds in Fig 3 may have limited value, similar efforts applied to the granular representa-

tions of data spaces afforded by the applied finite-state methodology appear far more

promising.

Amplitude maps of weighted transition mass values. As noted in Methods, we recognize

that composites of coefficient amplitude values [Eqs (7)–(9)] have the potential to reveal other

features not readily appreciated by examining the intrinsic coefficients. One feature of interest

is the quantity we refer to as the ‘transition mass’, which is the product of the intrinsic flux

amplitude for a given component and the transition probability. This quantity holds signifi-

cance, as it best describes the overall quantity of Hb component that participates in transitions

of a particular type. Because the transition probability (Fig 5) varies significantly over the set of

transition types and is weakly correlated with the patterns seen in the component flux maps

(Fig 9), it can be expected that the corresponding weighted-flux coefficient map will also differ

significantly from its unweighted counterpart. Shown in Fig 12 are selected plots of this coeffi-

cient space for ΔtotalHb and ΔHbO2Sat.

Plotted are 10x10 maps of the transition-mass amplitude for tumor-bearing breasts, and the

relative difference in amplitude when this is compared to the corresponding data for the con-

tralateral unaffected breast. Findings for ΔtotalHb and ΔHbO2Sat are shown in Fig 12(A), 12

(B), 12(C) and 12(D) respectively. Inspection of these weighted flux maps reveals a transition

dependence that differs substantially from those for the intrinsic-flux amplitudes (Fig 9, and

Figure G in S5 Appendix). Here we find that only a selected few transition types appear to

dominate the overall pattern. It is also apparent that the distribution of these among the vari-

ous transition types differs between the two Hb components. Favored for ΔtotalHb [Fig 12(A)]

are transitions mainly among States 4, 5, and 9 and 10. In contrast, the pattern seen for

ΔHbO2Sat [Fig 12(C)] strongly favors transitions between either 4 or 5 with either 9 or 10,

with reduced amplitudes for adjacent transition types. Patterns grossly similar to the latter are

found for the other Hb components (not shown). Also shown in Fig 12 is the pattern of relative

changes in transition mass when the affected and unaffected breast patterns are compared [12
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(b),(d)]. Inspection reveals that the dependence on transition type is qualitatively different

from similar comparisons presented above (cf., Fig 11). Common to both Hb components are

regions where the relative difference value is depressed in the affected individuals and others

where it is notably increased. As measures ofm constitute a composite quantity that includes

P, it is not overly surprising to find that trends in bilateral breast comparisons of affected sub-

jects are grossly similar to that seen for P. Nevertheless, the details of these trends differ among

the different coefficient classes [cf., Fig 5(B)], indicating that the influence of disease varies

Fig 12. Transition-mass findings for the breast-cancer subject group. (a), (c): Transition mass of ΔtotalHb (moles-L-1) and ΔHbO2Sat (%), respectively, for the

tumor-bearing breast of the breast-cancer subjects; computed using Eq (7). (b), (d): Relative percent difference (dimensionless) between the transition masses for

ΔtotalHb and ΔHbO2Sat, respectively, comparing the affected and unaffected breasts of the same subjects. Principally distinguishing the transition responses seen is that

the dominant transitions observed for ΔtotalHb (10!5, 4!9, 10!9, 4!5) involve an obligatory hyperemic response, while those for ΔHbO2Sat (4!10, 5!9) do not.

https://doi.org/10.1371/journal.pone.0198210.g012
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across the coefficient spaces. Also, and similar to findings noted in Figs 6, 7 and 11, computa-

tion of the average relative differences in transition mass (Fig 12B and 12D) shows that these

are elevated in the tumor breast, with a bias favoring ΔHbO2Sat compared to ΔHbtotal (99%

and 48% increase, respectively).

Data in mass-related nRMSD and correlation rows of Table 2 indicate that, similar to the

previously considered intrinsic fluxes, the transition-mass correlations for all Hb components

are notably lower for the T–U pairing than for any of the others, and the nRMSD is notably

larger.

ROC findings

Finally, shown in Fig 13 are results from ROC analyses (univariate AUC measures) applied to

two classes of weighted coefficient values for ΔHbO2Sat: flux amplitude weighted by the rate

constant [Eq (8), Fig 13(A)], and the transition mass [Eq (7), Fig 13(B)]. Inspection reveals

that for the former most of transition coefficients exhibit AUC values in the 80–90% range.

Different from this is a distinct checkerboard pattern seen in the transition-mass case. We con-

sider this finding as additional evidence that the various elements of the coefficient space

examined carry qualitatively different information.

Discussion

A network, whether physical or conceptual, is composed of a collection of interacting compo-

nents and serves as a vehicle of information transduction. The information content can be

physical, ranging in size from electrons to molecules to macroscopic objects, or non-physical

as in communication networks. Networks also may or may not have well-defined physical

structures. The former category includes roads and telephone lines, and, in the case of biologi-

cal systems, defined anatomical features such as the vascular tree or peripheral nervous system.

Fig 13. Exemplary ROC-analysis findings. Area-under-curve values from ROC analyses (units are percent) comparing the inter-breast differences for subjects in the

non-cancer and breast-cancer groups. The transition-based coefficients used as input to the ROC analysis computations are the product of intrinsic flux and either

transition rate constant (a) or transition probability (b).

https://doi.org/10.1371/journal.pone.0198210.g013
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There also are many examples in biology that are more similar to communication networks, in

that coordinated activities occur without the need for specific reliance on defined pathways.

Examples include actions of hormones and other effectors. Also, it is well appreciated that, on

a systems level, biological organisms rely on network behaviors to maintain homeostasis.

Often this takes the form of actions mediated by feedback mechanisms.

Consideration of two independent factors bridges these understandings of systems-level

biology to our goal of enhanced detection of breast cancer with the NIRS technique. The first

builds on a prior report from our group, which demonstrated that promising detection of

breast cancer is achievable from measures of a particular feature whose origin has long been

associated with tumor growth [16]. Evidence of enhanced modulation of intrinsic signals was

identified, the spatial dependence of which appears to extend far beyond the tumor border,

even in the case of small tumors. Also seen was evidence that the temporal features of this

behavior were substantially in line with findings from a prior report obtained using dynamic

thermography methods [33]. In that report, strong evidence was provided that the origin of

the observed temporal behavior was attributable to the actions of enhanced NO production, a

feature commonly associated with the sustained inflammatory phenotype of most tumors [34].

Thus, in addition to being the causative factor driving the observed temporal features, this

property of NO, which is a highly diffusible gas, may also serve to explain the extended spatial

features seen as well.

While the identified features are of interest in their own right, the recognition that they

were observed under resting-state conditions has prompted us to revisit the more basic issue

of how measures of this type can be explored to reveal useful findings. This leads to the second

consideration that has motivated the current work.

A simple observation that we previously recognized [18] is the tendency of most reports

involving NIRS-measures of tissue to explore the time-varying behaviors of the Hb compo-

nents separately, and not as a co-varying system. Indeed, this approach was adopted even by

us in our prior report exploring resting state behaviors in subjects with breast cancer [16]. To

align this consideration with our current work, it is helpful to briefly digress and take a broader

view of the analysis strategies applied to the exploration of behaviors of complex systems. This

goal is pursed from two different vantage points.

As previously noted, data interpretation strategies fall into two principal categories, strong

and weak models, each with advantages and tradeoffs. While the latter are often more flexible,

the utility of a given approach can be situation-dependent. Thus we hold that our choice of

adopting measures under the resting state is likely to provide for more repeatable outcomes

than would more complex protocols. We also note that the principal phenomenology observ-

able in the resting state follows from actions of feedback mechanisms. Significantly, experience

from clinical medicine has shown that disturbances in these behaviors are often an early sign

of disease [35].

Returning to the current work, having observed that disease features are present in the spa-

tial and temporal domains and that components of the Hb signal do co-vary, we appreciated

the merits that a classic weak-model approach based on a finite-state formalism can bring to

exploring this composite of behaviors. A simple representation of this is available from exami-

nation of a FMC. Considered here are discrete states of a system that undergoes transitions

from one state to another in accordance with some defined connectivity. Application of this

formalism to our measures of the Hb signal is contingent upon satisfaction of two require-

ments. One is the need to include descriptions of co-varying behaviors within our state defini-

tion. The second is the need to reduce continuous measures to a simplified discrete

representation.
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The first condition was met by choosing a state definition that includes some set of behav-

iors that comprises all five components of the hemoglobin signal simultaneously. The second

requirement was met from a simple appreciation that the experimental conditions involved

recording in the resting state. Because intrinsic behaviors tend to oscillate about a temporal

mean under these conditions, we appreciated that a first-order criterion for defining a state

can be accomplished by reducing the continuously varying amplitude of each Hb component

to a binary variable: alternately above and below the temporal mean value. This leads to an

assignment of ten distinct states, each corresponding to a unique permutation of algebraic

signs of the five components.

While the above considerations lead to unique state assignments, still missing is a set of cri-

teria that captures features associated with the transition matrix, which is the principal phe-

nomenology that finite-state formalisms are intended to explore. Motivating our approach was

the understanding that feedback mechanisms likely operate with different time constants in a

spatially and temporally varying manner. Having the aim of retaining simplicity in this first

application, we appreciated the utility of defining transitions not on the basis of a fixed time

interval, as is characteristic of a true FMC process, but rather by treating a change in the alge-

braic sign of a given component as the criterion for defining transitions from one state to

another. This has the effect of introducing varying dwell times that accompany any particular

transition.

Considerations impacting applied definitions of Hb states

While our effort here has been to emphasize quantities that are easily computed, we recognize

that more granular descriptions can be obtained by taking into account either the history of

state transitions beyond the immediate predecessor, or by imposing additional criteria such as

the magnitudes of the Hb-components prior to a transition [26]. While the latter is not cur-

rently a criterion for defining states, it is nevertheless considered at a component level, in the

measures of flux. Expansion of the state definitions would, however, involve a tradeoff in sig-

nal-to-noise, as the fraction of data comprising a given state will be reduced. In practice, for a

given application, we would expect that more optimal assignments can be accomplished by

adjusting the criteria that are used to define a state, for example by reducing number of Hb

components (e.g., collapsing states 3 & 8 into 2 & 7), or, as suggested, by accounting for fea-

tures of transition history and component amplitudes. These understandings hold whether the

primary measures are limited to the sensor space or include additional processing by tomo-

graphic reconstruction.

Another consequence of our state definitions has been to limit dimensionality by averaging

values of the transition matrix coefficients over time and space. Being thus independent of the

pre-transition dwell time, and where in space and when in time the transition occurs, the

derived values represent behaviors typical of the entire breast. Thus the methodology purpose-

fully considered a more coarse representation than was required, but one that we believe is

more in line with the expected spatial limits of the NIRS technique while also being aligned

with the spatial scale on which feedback mechanisms are believed to operate. Also, and because

our aim has been to evaluate potential differences among the various coefficient values on a

group level, in addition to applying the preceding criteria, evidence for such differences was

determined by computing the average response across all subjects in a particular group, sepa-

rately for the left and right breasts.

Separately, which data values are included in a given state will be sensitive to preprocessing

schemes that may serve to smooth or otherwise alter trends in the primary data. Here we have

limited preprocessing steps to linear detrending, in recognition that long-term drift is likely
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instrument related. Not employed have been efforts to eliminate specific intrinsic classes of fre-

quency structure (e.g., respiratory or cardiac components), whose examination may prove

informative.

Yet another factor influencing the quality of information obtained is the composition of the

subject groups. Two aged-matched groups were considered: women with confirmed breast

cancer in either breast, and those who have other forms of breast disease or have no known

breast pathology. Each group comprised subjects whose breast-cup size ranged from B to DD.

Thus we can conclude that the derived coefficients are representative of behaviors that have

been substantially averaged across multiple potentially confounding factors. As evidenced by

the described Results, the resultant formalism supports assignment of a broad class of coeffi-

cients, which yield feature patterns that appear mainly independent of each other and are dis-

ease-sensitive. Further, and especially gratifying, is the additional evidence that principal

features of these coefficient spaces appear to follow simple relationships that are aligned with

well-defined principles of chemical reaction theory.

While the methodology put forward is an extension of prior reports by our group [18,24],

for completeness and clarity we recognize a superficially similar methodology that has more

recently been described [25,26]. The methodologies advanced in the latter reports also evaluate

co-varying elements of the Hb signal. Different, however, is the temporal span of measures

from which coefficient values are determined and the underlying theory applied to generate

them. In these reports, coefficient values are based on instantaneous measures of a time-evolv-

ing process [36]. In contrast, because we believe that the underlying processes that drives feed-

back mechanisms operate as a network with a spatially and temporally varying matrix of

transition time constants, the coefficient values that we compute is based on processes that

exhibit varying dwell times. Also different is the fundamental theory governing feature genera-

tion. Our methodology is motivated by an understanding of stochastic networks, in recogni-

tion that feedback behaviors affect not one, but many factors that interact. Recognizing that

instantaneous values of co-varying measures trace a trajectory in (ΔdeoxyHb,ΔoxyHb)-space

(Fig 1, and its equivalents in the cited literature), Ref. 36 has sought to apply principles of the

physics of moving bodies as a strategy for exploring features of those trajectories. While it is

not necessary for an applied mathematical formulation to have a strong biological correspon-

dence, arbitrary adoption of laws that are relevant to one field but not applicable to another

risks introduction of reification fallacies.

We are aware that the biological interpretation of features derived from data-driven meth-

ods can be challenging. This can become important in situations where the goal is not just to

classify data, but to deduce meaning from the derived measures as a guide to clinical interven-

tion. We also note that the data transform kernel applied here is a simple counting scheme and

does not involve the use of complex operations in the time or frequency domain. We therefore

believe that, in contrast to other strategies that might be considered, (e.g., various temporal

decomposition methods), the methodology applied here seems unlikely to distort the underly-

ing biological interpretation of the various state classifications. As noted, while we have pre-

sented these within a context that we believe substantially reflects a gradient in oxygen supply-

demand balance, substitution of the described sequence by others will not influence the infor-

mation content, because the data transformations used here are independent of the state

labels.

Implications of applied methodology for application development

Two principal findings documented in this report are: (1) the applied scheme supports identi-

fication of a dense coefficient space; (2) the feature patterns seen among the various
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coefficients appear mainly independent of each other and are disease-sensitive. Normally, evi-

dence of independent features having such sensitivity provides an excellent launching point

for optimizing interpretive strategies. These can include the goal of detecting disease or dis-

criminating one type of disease from another, or of appreciating responses to various types of

therapeutic interventions [37]. Specific methods well suited to leverage these features are vari-

ous forms of machine-learning algorithms [38].

Because NIRS measures can be applied to almost any tissue type and subject group, genera-

tion of similar coefficient classes from these measures seems feasible. Also recognized is the

understanding that there are multiple forms of acute and chronic conditions that can lead to

altered tissue perfusion. Among the former are conditions such as wound healing, compart-

ment syndrome, stroke, and other causes of hypoperfused states, while the latter includes dis-

eases whose morbidities can be traced to either vasculo-occlusive disease (e.g., diabetes) or to

sustained inflammatory responses with or without associated vascular malformations (e.g.,
cancer, various forms of autoimmune disease). Further, growing evidence that fNIRS measures

can be reliably acquired under a wide range of conditions, including unconstrained environ-

ments [39,40], adds to the expectation that the described methods could serve to advance

applications in these environments as well.

We also note that our demonstration of promising disease detection under resting-state

conditions likely holds importance in clinical environments, where constraints commonly

arise; for example, subjects may be anesthetized or unconscious for other reasons. The poten-

tial for use in outpatient settings would also appear favorable, as the resting-state capability

simplifies patient setup requirements.

Further, while our aim here has been to emphasize the practicality of resting-state measures,

extension of described methods to neurobehavioral assessments, including sleep studies,

appears feasible. The granularity of accessible features could serve to advance biofeedback or

brain-computer interface applications. In recognition that connectivity patterns of the brain

are not static, a particular focus would be to acquire independent measures of such states while

fine-tuning task recognition responses to this evolving background. The recent demonstration

that communication with “totally locked-in” subjects can be accomplished from fNIRS mea-

sures emphasizes the merits to extend this capability [41].

Separately, the considered methods may have significant preclinical value. Of interest here

are the many classes of manipulations intentionally imposed on animal models in pursuit of

new drugs or other disease treatments, or to extend basic understandings of the systemic

dependences that accompany these manipulations. For instance, much effort is devoted to

establishing animal models that have specific disturbances in gene expression, immune

response, or properties of the microbiome. While a range of toxicity measures and measures of

principal organ function is currently established [42,43], mainly lacking are tools that can eval-

uate the impacts of these manipulations on the information domain of oxygen delivery to tis-

sue in the intact animal, especially in the form of a non-invasive, high-throughput screening

method. Appreciation of the importance of this information domain with regard to overall

health, and the observation that many classes of drugs that meet the criteria for human trials

go on to fail because of unanticipated side effects, suggest that added attention to this basic fea-

ture of tissue function may be warranted.

Further, it is also understood that other sensing strategies intended to explore the time-

varying features of the hemoglobin signal could benefit from the methods described here.

These would include photoacoustic imaging [44] and new holographic methods that support

suppression of the influence of light scattering on image quality [45].
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Future considerations

Access to a dense feature space of substantially independent coefficients may support develop-

ment of new approaches to computational modeling or new analysis strategies [46]. This

brings to mind a more basic understanding of factors contributing to information transduc-

tion. For instance, discrete-valued information such as sequences of Hb states can be formally

regarded as arbitrary-length “words” in a language having a 10-“letter” alphabet. The same

concept applies equally well to sequences of transitions between the current state and its prede-

cessor (for a 90-letter language), the current state and last two predecessors (810 letters), etc.
The structures and constraints that may be concealed in these sequences are unknown a priori,
and it is prudent to adopt analysis strategies that can handle arbitrary degrees and types of

complexity. Work in other fields has shown that formal language theory (FLT) is well-suited

for the type of situations that we are faced with [47]. While this framework was originally

intended to appreciate syntactic structures present in human languages, it has proven effective

for evaluating a wide range of generative rule-based systems, including computer programs,

RNA structure, animal vocalizations, and even music and dance [48,49].

An example of a goal that is conceptually straightforward and supports application of FLT

to the methodology defined here, would be determine the level in the Chomsky hierarchy cor-

responding to a state- or transition-based language, or to derive an appropriate set of gram-

matical rules [48]. Here we observe that the alphabet that corresponds to the derived language

can arise from two distinct representations. Already noted is the assignment of the Hb-states

to the letters of an alphabet, with words of arbitrary length. Alternatively, the combinations of

Hb-signal component and algebraic sign (i.e., ΔD(-), ΔD(+), ΔO(-), etc.) may be taken as the

ten letters of a language comprising exactly ten words (assuming no additional state definitions

are employed), each being five letters long, that may be arranged in any sequence into sen-

tences of any length.

What we find intriguing about the latter representation is its formal similarity to the struc-

ture of DNA and RNA, each of which comprises just four chemically distinct bases (“letters”)

arranged in groupings of three (“words”), sequences (“sentences”) of which encode a vast

quantity of information. As previously discussed [50,51], information of this type can be repre-

sented in the context of FLT to provide for useful guidance in the design of RNA molecules. By

analogy, the sequence of state transitions that arises from the similarly limited alphabet pro-

posed here may also encode a wide range of information regarding the feedback mechanisms

that operate in the resting state.

Practical implementations of this line of inquiry can include the goal of determining the

hierarchy level or the number or specific content of grammatical rules, and how these vary

across different subject groups. Examples of criteria that may be used for defining these groups

include the presence or absence of pathology, different levels of distraction (brain studies), or

fatigue or stress in cases where the aim is to appreciate factors affecting overall performance in

high-stress environments.

However, the type of undertaking suggested here is more challenging than the sorts of bio-

logical questions that typically are addressed using FLT-based methods [48]. The reason is that

at least two considerations render the solution non-unique: first, when the information one

has about a language consists of a finite number of letter sequences, then grammatical struc-

tures able to derive them all can be found at any hierarchical level, provided that no limit is

placed on the number of rules [48,52]; second, even if the hierarchical level is specified in

advance, typically it is possible to determine multiple sets of grammatical rules that can derive

all of the available sequences [52]. Accordingly, a strategy that incorporates multiple criteria is

required to decide which, among many combinations of hierarchy level and grammatical-rule
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sets, is optimal. For example, the goal could be to simultaneously minimize the required hier-

archical level and the required number of grammatical rules. (This approach is suggested in

analogy to what is done in dynamic causal modeling computations to select the “best” model

of effective connectivity from among many hypotheses: there, the algorithm strikes a balance

between high goodness-of-fit to experimental data and low model complexity [53].) We also

would anticipate making extensive use of cross-validation techniques [54], to test for overfit-

ting and to evaluate the sensitivity of different combinations of hierarchical level and gram-

matical rules to the order of data presentation.

The preceding suggestion constitutes a particular approach to increasing the type and quan-

tity of information that could be extracted from accessible features of fNIRS time-series data.

In parallel, we have begun to explore methods for expressing those features in terms of other

quantities that have biological relevance but are not directly observable.

Thus we acknowledge the potential to extend the network representation considered here

into one where the goal is to derive coefficients from a hidden network of coefficients that

reflect features corresponding to details of feedback mechanisms.

To make this idea less abstract, we briefly describe one plausible modeling scheme that

might be considered as a first-order representation of the state transition network. In particu-

lar, we consider the framework of a DC electrical network [55], in recognition of the analogies

that can be drawn between Pfi (or PfiϕX(f,i) =mfi) and kfi to the electrical current and conduc-

tance (i.e., 1/resistance) represented in Ohm’s Law. Connection to the physiological processes

underlying observed patterns of state transition coefficients comes from an understanding that

real-world electric-circuit networks are typically based on a distribution of power sources

required to drive various specialized functionalities. As our Hb-state representation considers

behaviors that originate on a macroscopic scale within an inhomogeneous underlying tissue

architecture, it seems likely that the factors that modulate the Hb signal will also influence fea-

tures of the state network in a distributed manner. Consequently, our attention in formulating

a network representation has been to devise a scheme that allows for derivation of coefficients

that correspond to such distributions.

The definitions of kfi, Pfi and ϕX(f,i) suggest a correspondence between kfi and electrical con-

ductance, and likewise between either Pfi or PfiϕX(f,i) and current. (The Pfi values are “transi-

tion currents” if transitions are analogized to a type of particle, while PfiϕX(f,i) values are

concentration-change currents or saturation-change currents.) The different Hb states can be

likened to nodes in an electrical network, and the quantity 1/kfi to the value of a resistor that

conducts current from the ith node to the fth (more strictly, a resistor in series with an ideal

diode, to allow for kfi 6¼ kif). These correspondences bring to mind at least two additional anal-

ogies to properties of electrical circuits.

1. A new quantity corresponding to voltage can be defined, by applying an analogue of Ohm’s

law to the transition-probability and rate values:

VTCðf ; iÞ ¼
kfi
Pfi
; VXðf ; iÞ ¼

kfi�Xðf ; iÞ
Pfi

; ð14Þ

where X is any of the Hb-signal components D, E, O, S or T in Eq (5).

2. In the typical framing of electrical-network analysis problems [56], the resistances and

applied electromotive forces (EMFs) are known quantities and the voltages and currents

are the unknowns that are solved for. A different, inverse, version of the problem is sug-

gested here, in that the currents and resistances are known quantities, and what must be

found is an EMF or combination of EMFs that would produce the known currents, given
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the known structural (connectivity and resistances) and dynamic (currents) properties of

the network. Assuming these quantities can be identified with a degree of confidence, then

the considered approach would seem capable of amplifying our understanding of the

actions of feedback mechanisms whose influences can be directly observed but whose

details remain hidden.

As a separate avenue for potential future developments, we also recognize the potential

to express properties of the defined states in terms of their sensitivities to more primitive

behaviors. Here we refer to a methodology recently described by our group, which demon-

strated that cross-domain moments of spatiotemporal behaviors (i.e., mean, variance) can

be distinguished in terms of their sensitivity to these primitive behaviors [16]. While our

emphasis in this report has been to explore features of data that undergo specific state tran-

sitions, we also recognize that the cloud of points corresponding to each Hb state (e.g., see

Fig 3), can be represented as a time series. In fact, because each state is a composite of the

five elements of the Hb signal, five time series can be defined for each state. For each of

these it can be shown that there are fourteen nontrivial cross-domain (space-time) moments

that can be defined (i.e., the eight that are considered in Ref. 16 plus an additional six, five

of which would be trivial (because always exactly zero) should the Hb signal not be sepa-

rated into states). Our interest in these quantities is motivated by the expectation that as the

underlying drivers of tissue-vascular coupling vary (e.g., as they are influenced by actions of

disease), they can imprint different spatiotemporal behaviors that are sensitive to the indi-

cated primitives. Thus we acknowledge that in addition to the above-described transition-

dependent network properties, representations of bulk features of the network may add to

the differential information that is accessible.

To summarize, in this report we have demonstrated the influences that intrinsic feedback

mechanisms have on the matrix of coefficient values that are accessible from a finite-state

representation of co-varying elements of the hemoglobin signal explored under resting-state

conditions, for affected and unaffected breasts. Evidence obtained strongly indicates that the

influence of disease differs significantly across the various feature spaces.

The molecular biology and neurosensing communities have long recognized that the infor-

mation content of macromolecular structures (e.g., DNA, RNA, proteins) and the network of

neural signaling that occurs in the brain, respectively, constitute biological languages

[49,57,58]. Both classes of information follow a set of rules (i.e., grammar) and a hierarchy of

relationships among these rules in ways that are similar to rules of linguistics. Thus we con-

sider features of the Hb signal identifiable from our methods as constituting “conversations”

between the vasculature and its host tissue that are conveyed in the “language of hemodynam-

ics.” Also, whether this understanding and other suggested methods actually prove to offer

useful benefits or not, we are still left with our explicit demonstration that the identified fea-

tures have a substantial independence in their sensitivity to a representative disease type (can-

cer) for a representative tissue class (breast). Demonstration of this previously unrecognized

independence should support new opportunities to appreciate common features of elementary

factors (e.g., its rules) that are often expressed by the information rich domains of biological

systems [59].

Complex phenomenology in dynamical systems often can be reduced to more simplified

descriptions, provided that the rules governing state-space behaviors can be determined

[60]. Evidence that the identified features are accessible under easily implemented experi-

mental conditions (i.e., the resting-state) likely serves to enhance development of practical

uses.
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