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Abstract

Adherence to medication is often measured as a continuous outcome but analyzed as a dichotomous

outcome due to lack of appropriate tools. In this paper, we illustrate the use of the temporal kernel

canonical correlation analysis (tkCCA) as a method to analyze adherence measurements and symptom

levels on a continuous scale. The tkCCA is a novel method developed for studying the relationship

between neural signals and hemodynamic response detected by functional MRI during spontaneous

activity. Although the tkCCA is a powerful tool, it has not been utilized outside the application that it

was originally developed for. In this paper, we simulate time series of symptoms and adherence levels for

patients with a hypothetical brain disorder and show how the tkCCA can be used to understand the

relationship between them. We also examine, via simulations, the behavior of the tkCCA under various

missing value mechanisms and imputation methods. Finally, we apply the tkCCA to a real data example of

psychotic symptoms and adherence levels obtained from a study based on subjects with a first episode of

schizophrenia, schizophreniform or schizoaffective disorder.
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1 Introduction

One of the most challenging aspects of health care is patient adherence (previously designated
compliance) to medication, the extent to which patients take medications as prescribed by their
health care providers.1 Numerous studies have shown that in addition to the personal suffering
caused by relapse of disease, premature disability, or death, poor adherence also leads to
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increased health care costs.2–8 As reported by Osterberg and Blaschke,1 33–69% of all medical
related hospital admissions in the USA are due to poor adherence, with a resultant cost of
approximately $100 billion a year.2,4 These important clinical and societal costs have driven
development of adherence research as a focus of investigation across multiple branches of
medicine. Even for studies not directly focused upon adherence, understanding the effects of poor
adherence to a study medication can be crucial for interpreting study outcomes.

Adherence in studies is often analyzed as a dichotomous variable (adherence vs. non-adherence)
or as a percent of medication taken over defined periods. These methods can model well patient
behavior for patients with sustained periods of similar levels of adherence (e.g. sustained periods of
adherence or total refusal of medication). However, patient adherence behavior is often more
complex. Patients may have intermittent non-adherence (e.g. taking medications one day and not
the next) or partial adherence consisting of taking some but not all of their prescribed medication.
Methods that quantify adherence as a dichotomous variable or percent medication taken do not
model well complex non-adherence behaviors and may therefore fail to detect important outcome
differences. For example, patients who take half their prescribed dose daily, patients who take their
full dose every other day and none other days, and patients who take their prescribed dose daily for
half a period but none afterward could be assigned the same percent adherence but have different
outcomes. In the past, obtaining the data needed for modeling complex medication behaviors was
challenging. Pill counts, for example, can only provide estimates of adherence averaged over the
period between counts. However, the development of electronic medication monitors such as chips
that record the data and the time of every pill ingestion provide methods to obtain data on
adherence on a daily, or even more frequent, basis. The ability to obtain these richer data sets
suggests the need to consider whether our analytic approaches may need to be expanded.

Traditional analytic strategies also often focus upon outcomes entered as dichotomous outcome,
for example, relapse of a disease. Usually, these dichotomous outcomes are obtained by using a cut-
off point on a continuous scale of symptoms.7,8 Even if the cut-offs are based on clinically
meaningful definitions, in general, it is more informative and efficient to analyze the continuous
scale without dichotomization.9

This paper presents a method to analyze the effect of non-adherence on symptom levels using the
whole continuum of both adherence and symptom measurements. The data are considered as two
time series, one affecting the other and with a lag between them. It is often of interest to estimate the
lag (on the average across all the patients) between the two series. For example, one may think of
psychotic symptoms after first response of a patient with schizophrenia and adherence measured as
dose levels of a treatment drug (e.g. risperidone) as two time series. As the adherence levels drop off
occasionally, the psychotic symptoms return to pre-response levels. This in turn may bring the
adherence levels back to the response dose level causing the psychotic symptoms to decrease or
disappear again after a lag. This is an example of two time series mutually affecting or interacting
with each other for one patient. Observed on multiple patients, we have multiple time series of
psychotic symptoms and multiple time series of adherence levels. Researchers involved in adherence
studies of mental health patients are often interested in knowing the average time lag. In the above
example, the highest correlation between the two time series is obtained at some time shift of one of
the series. The main question of interest is to determine the time shift at which the highest
correlation occurs.

The two main issues to be dealt with when working with such questions are (a) the inherent
multivariate nature of the data (each time series measured on multiple subjects) and (b)
noninstantenous coupling between the two time series. If the two times series were coupled
instantaneously (that is, no lag), the multivariate nature of the problem could have been handled
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by canonical correlation analysis (CCA) which finds linear combinations of cross sections of the two
series that maximizes the correlation between them. Specifically, CCA first determines the pair of
linear combinations (canonical variables) having the largest correlation, and then recursively at the
k-th step determines the pair of linear combinations which maximizes the correlation among all
choices uncorrelated with the previous k-1 canonical variables.10 If the number of dimensions is very
large, it becomes more efficient and numerically more stable to optimize the linear combinations
using kernel methods, i.e. kernel CCA.11–13 In the presence of non-instantaneous coupling, the
above methods are insufficient; however, in this case, a recently developed approach called the
temporal kernel canonical correlation analysis (tkCCA) can be utilized.14,15 The tkCCA takes
into account the multivariateness as well as the temporal dynamics of the coupling by looking at
canonical correlations at different time lags. Maximization is performed as a whole, distinguishing it
from standard correlation analysis which simply computes the similarities between the two series
individually.

The original application that led to the development of the tkCCA was to examine the
relationship between neural signal fluctuations and blood oxygen level-dependent (BOLD)
contrast obtained by functional magnetic resonance imaging (fMRI) during spontaneous
activity.15 But, the tkCCA is a technique that can have wide applications outside the area of its
original development. In this paper, we illustrate how the tkCCA can be applied to adherence
studies. First, we give a notational introduction to the tkCCA. Then we illustrate the use of the
tkCCA with simulations and an application to a real-world dataset. We conclude the paper with a
discussion on the possible use of the tkCCA in adherence research in the future.

2 Temporal kernel canonical correlation analysis

The theory presented in this section was developed by Bie�mann and colleagues14; we summarize it
here for the sake of completeness. Let us assume that X 2 RN�T and Y 2 RN�T denote two time
series with T time points measured on N subjects. That is, ith row of X and Y respectively
correspond to the two time series measured on the ith patient; for example, the series of
psychotic symptoms and the series of adherence levels of a patient with schizophrenia. In the
presence of instantaneous coupling, we could have used CCA on any cross section of the two
time series, xj and yj, where xj and yj denote the jth columns of X and Y, respectively. We may
consider xj and yj, j ¼ 1, . . . ,T, as T realizations (samples) of two random variables x and y,
respectively. For the sake of simplicity, we assume that x and y are centered; that is, the
underlying means are zero. In the first step, CCA estimates two normalized vectors ax and by in
RN (first pair of canonical coefficients) such that the correlation between the projections hax,xi and
hby, yi is maximized10

argmax
ax,by

Corrðhax, xiÞ, ðhby, yiÞ

¼ argmax
ax,by

E hax, xihby, yi
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var hax,xið ÞVar hby, yi

� �q
0
B@

1
CA

such that Var hax, xið Þ ¼ 1 ¼ Var hby, yi
� �

ð1Þ

where h�, �i, E and Var respectively denote the inner product, expectation and variance; we require
unit variances to reduce the freedom of scaling of the projections. The optimal correlation in (1) is
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called the first canonical correlation and corresponding projections that maximize the first canonical
correlation are called the first canonical variables.10 Note that ax and by can also be obtained as an
eigenvector corresponding to the maximal eigenvalues of a generalized eigenvalue problem. If x and
y are variables of dimension 1, we stop at step 1. If the dimension (that is, N) is greater than 1, we
would proceed recursively to identify further canonical variables. For example, the second pair of
canonical variables is the pair of projections having unit variances, which maximize the correlation
in (1) among all choices that are uncorrelated with the first pair of canonical variables, and so on.
The kth canonical correlation is always greater than the ðkþ 1Þst canonical correlation, and the first
canonical correlation is interpreted as a measure of overlap between the original set of variables.

For high dimensional multivariate data, the above approach may not be computationally
optimal. In such cases, kernel-based methods have been suggested to obtain the canonical
coefficients in (1). In addition to computational efficiency, kernel-based methods are also useful if
the relationship between the two original set of variables is nonlinear. When the columns of X and Y
are centered, the linear kernel matrices KX and KY are given as the inner product of the data matrices

KX ¼ XTX,

KY ¼ YTY:
ð2Þ

The canonical coefficients of each variable are then given as a linear expansion of the data points

ax ¼ Xu,

by ¼ Yv
ð3Þ

where the u 2 RT and v 2 RT are the solutions of the generalized eigenvalue problem in kernel space

0 KXKY

KYKX 0

� �
u
v

� �
¼ �

K2
X 0
0 K2

Y

� �
u
v

� �
: ð4Þ

The above equation can be obtained by solving the Lagrangian corresponding to the optimization
problem given in (1). For the data analysis in sections 3 and 4, we used the geigen package16 in R to
solve equation (4). For the sake of simplicity, we consider only the largest eigenvalue � (i.e. the first
canonical correlation coefficient). In practice, we have to introduce regularization parameters �X and
�Y in equation (4) to prevent overfitting

0 KXKY

KYKX 0

� �
u
v

� �
¼ �

K2
X þ �XKX 0

0 K2
Y þ �YKY

� �
u
v

� �
: ð5Þ

In the discussion of behavioral health research presented in the introduction, we saw that the
highest correlation is obtained at some time shift between the two time series. In general, we have to
assume that there is not just a fixed delay, but that the canonical coefficients have a temporal
dimension. We will therefore generalize the CCA optimization problem by allowing ax to be
time-dependent14,15

argmax
axð�Þ,by

Corr
X
�

haxð�Þ,X�i, hby,Yi

 !
: ð6Þ
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We may rewrite the above optimization problem by letting

~X ¼

X�1
X�2

..

.

X�L

2
6664

3
7775 2 RNL�T and ~ax ¼

axð�1Þ
axð�2Þ

..

.

axð�LÞ

2
6664

3
7775 2 RNL�T, ð7Þ

so that it reduces to an ordinary CCA problem

argmax
~ax,by

Corr h ~ax, ~Xi, hby,Yi
� �

: ð8Þ

Here, X�j , j ¼ 1, . . . ,L are time-shifted copies of the data matrix X, each shifted in time by a lag
from the set f�1, . . . , �Lg. It is by looking at canonical correlations at different time lags that the
tkCCA accounts for the temporal dynamics of the coupling. With ~KX ¼ h ~X, ~Xi instead of KX in the
generalized eigenvalue problem (5), we may obtain the canonical coefficients for the optimization
problem in (8) as

~ax ¼ ~Xu,

~by ¼ ~Yv:
ð9Þ

In particular, we may recover the canonical coefficient for each time lag by

axð�Þ ¼ X�u: ð10Þ

The results of the tkCCA may be used to compute a canonical cross-correlogram similar to a
standard univariate cross-correlogram

�ð�Þ ¼ Corr haxð�Þ,X�i, hby,Yi
� �

¼
haxð�Þ,X�ihby,Yi

ðhaxð�Þ,X�iÞ
2
ðhby,YiÞ

2
:

ð11Þ

3 Simulated illustrative examples

In this section, we illustrate the above concepts using simulated data. In section 3.1, we generate
univariate time series via simulation, and in section 3.2 we generate sets of multivariate times series
to apply and illustrate the tkCCA method.

3.1 Univariate time series example

The effect of non-adherence may vary from patient to patient. Determining the time lag between
non-adherence and return of symptoms for each individual patient can have important utility in a
clinic. For example, a clinician may schedule more hospital visits for a patient who has a lag smaller
than the average patient. A recently developed drug-delivery strategy for psychiatric patients is the
extended or sustained release drug delivery, specifically based on long acting drug formulations.17 In
this strategy, instead of daily doses, the drug is administered alternate days, or weekly, for example.
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The time interval is decided on a patient to patient basis. A patient with quicker relapse would be
given more frequent doses compared to a patient with slower relapse so it is useful to know the time
lag between adherence and symptom levels.

We consider a hypothetical symptom scale for a hypothetical brain disorder. We assumed that the
symptom scale is based on four items, each ranging from 1 to 7, so that the total symptom score
obtained by taking the sum of these four items ranges from 4 to 28. We generated symptoms score
for a hypothetical patient for 100 weeks as an autoregressive integrated moving average (ARIMA)
model, p(t), with autoregressive (AR) order set to 1, and degree of differencing and moving average
(MA) order set to 0, and AR coefficients set to 0.9 (Figure 1, top panel). The following R codes were
used for this step

set:seed 54ð Þ

symps arima:sim list order ¼ c 1, 0, 0ð Þ, ar ¼ :9ð Þ, n ¼ 100ð Þ þ 10

The dose level for each patient can vary, but we assumed that the dose level at which the
hypothetical patient in our illustration responded initially was around 3mg. Note that typically
the prescribed dose level may increase from the initial-response–dose level if the symptoms
progressively worsen due to non-adherence. We generated the dose level time series, d(t), as a
scaled (by a factor of 0.33) version of the symptoms time series, p(t), shifted to the right by two
units (weeks) and with Gaussian white noise added to it:

d ðtÞ ¼
1

3
pðtþ 2Þ þ

1

2
NðtÞ, ð12Þ
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Figure 1. Simulated plot of symptoms and adherence levels for a patient (with a hypothetical brain disorder) with

high fluctuations of adherence: Univariate time series example.
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where NðtÞ ¼ Nð0, 1Þ is Gaussian i.i.d. The codes used for this step are shown as follow:

d symps=3

set:seed 50ð Þ

dose c d 3 : 100½ �, d 1 : 2½ �ð Þ þ 0:5 � rnorm 100ð Þ

The univariate time series generated via these codes are shown in Figure 1, bottom panel, and
reflects the fluctuations in adherence from the prescribed response-dose level. We, a priori, set the lag
between the two simulated time series to be 2 units (weeks). That is, we assumed that it takes
approximately two weeks for symptoms to worsen, when the patient does not adhere to the
prescribed dose level. The goal of the analysis was to check whether the lag found by the tkCCA
method would match the lag that was set a priori.

The lags that we considered for the tkCCA method, equations (7) to (10) are

�25, � 24, � 23, . . . , 0, . . . , 23, 24 and 25 units:

The lag set to be considered will typically depend on the clinical question. In general, we
recommend to set the lag set as large as possible. The correlogram based on the absolute values
of �ð�Þ in equation (11) is shown in Figure 2. The peak of the correlogram is at a lag of 2 weeks, and
so, indeed the tkCCA method recovers the lag that was set a priori.

We conducted Monte Carlo simulations to see whether the performance of the tkCCA method
depended on the lag or the variance of the noise. For each Monte Carlo iteration, a symptom series
similar to the series in Figure 1 was generated by the following code:

set:seed 54ð Þ

symps1  arima:sim list order ¼ c 1, 0, 0ð Þ, ar ¼ :9ð Þ, n ¼ 100ð Þ þ 10

#In the Monte Carlo loop . . .

symps  symps1 þ 1:5 � N 0, 1ð Þ

Note that the symptoms series varies at each iteration because of the 1:5 �Nð0, 1Þ noise term
added to it. As in the aforesaid example, at each iteration, we obtained the dose series, first by
scaling the symptoms series by a factor of 1/3 and then adding a lag and noise term to it. We
conducted 10,000 Monte Carlo iterations for each of the following lags, set a priori between the dose
and symptoms series

2, 4, 6, 10, 15 and 20

and the following noise terms, added to the dose series

0:25 �Nð0, 1Þ, 0:50 �Nð0, 1Þ, 1:00 �Nð0, 1Þ and 1:50 �Nð0, 1Þ:

Table 1 shows the percentage of times the tkCCA method correctly identified the a priori set lag
for each lag and noise combination. The performance of the tkCCA is perfect for variance (of the
noise term) up to 1:02, but is slightly less than 100% for variance 1:52. However, it should be noted
that, for example, with a lag of 20 weeks and a noise term of 1:5 �Nð0, 1Þ added to the dose series,
the actual Pearson product moment correlation between the symptom series and dose series is
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approximately 0.01 on the average. Even with such a small correlation between the dose and
symptom series, the tkCCA method identifies correctly the a priori set lag for 98.1% of the
iterations. Product moment correlation may or may not be a good measure to assess
the relationship between the two series, but for comparative purposes, it could be noted that the
corresponding correlation with a lag of 2 and noise term of 0:25 �Nð0, 1Þ was approximately 0.45.
We did not consider a noise term larger than 1:5 �Nð0, 1Þ since we think a scenario with Pearson’s
correlation coefficient between the two series less than 0.01 is not a realistic scenario. In other words,
we think that a scenario where there is no relationship between the dose and symptom series should
not be used to assess the performance of the tkCCA.
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Figure 2. Correlogram from the tkCCA analysis for Figure 1.

Table 1. Performance of the univariate tkCCA in scenarios similar to Figure 1.

Lag ! 2 4 6 10 15 20

Noise term #

0.25*N(0,1) 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

0.50*N(0,1) 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

1.00*N(0,1) 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

1.50*N(0,1) 98.1% 98.2% 97.8% 98.7% 98.9% 98.1%
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One important feature of the type of dose series presented in Figure 1 and utilized in simulations
presented in Table 1 is its highly fluctuating nature. The dose varies almost every time unit. Such
high fluctuations in drug intake could be a realistic feature for certain chronic conditions such as
HIV infection, but may be not be realistic for certain other chronic conditions such as schizophrenia
or Type 2 diabetes. In patients receiving Highly Active Antiretroviral Therapy (HAART) for HIV
infection, especially taking a total of 15 or more pills (HIV and non-HIV medications, combined)
per day, a highly fluctuating adherence pattern has been observed.18 Reasons for such high
fluctuations in medication adherence could include: being away from home, simply forgetting,
falling asleep/sleeping through a dose, feeling depressed/overwhelmed, having problems taking
pills at specified times, and/or wanting to avoid side effects.

For other chronic conditions such as Type 2 diabetes or schizophrenia such high fluctuations in
dose intake of medications (insulin or an antipsychotic) are not very common. A more common
scenario is described as follows: a patient takes the prescribed dose for a few weeks or a few months,
sees a substantial improvement in the symptoms, and then drops the dose level to a fraction of the
prescribed dose (e.g. half a pill or quarter of a pill) for a few weeks. His/her symptoms may not re-
emerge immediately, and so after a few weeks on the reduced dose, the patient may drop it further
(e.g. to quarter of a pill or no pills at all). After an extended period of this reduced dose period, the
symptoms may re-emerge gradually. The key point is that during the ‘‘back to normal’’ period, the
patient may consistently take ‘‘half a pill’’ for a few weeks and then, for example, drop it down to
‘‘no pills at all’’ for a few weeks, before the symptoms slowly re-emerge. In the case of a patient with
schizophrenia, for example, the families may intervene when certain symptoms re-appear, and
patient may re-start to take at least part of the prescribed dose level, and so on. Thus instead of
fluctuating the dose every week, the decrease (‘‘tapering off’’) and increase of dose levels would be
more gradual. Figure 3 depicts an example of such a scenario for a particular patient.

We used Monte Carlo simulations to assess the performance of the tkCCA for cases similar to
that shown in Figure 3. The prescribed initial-response–dose level that we considered for this
simulation study was 3 units (mg or g), and the fractional dose levels were

0:0, 0:5, 1:0, 1:5, 2:0 and 2:5:

The time period on each dose level was chosen from

0, 2, 3, 4, 5, 6, 7, 8 and 10 weeks:

A dose level was assigned randomly to the time periods 2, 3, 4 and 6, 7, 8 two times, a dose level
was assigned randomly assigned a period of 5 weeks six times, and time periods of 0 and 10 week
length one time each, so that the total time period would add up to

ð2� 2Þ þ ð3� 2Þ þ ð4� 2Þ þ ð6� 2Þ þ ð7� 2Þ þ ð8� 2Þ þ ð5� 6Þ þ ð0� 1Þ þ ð10� 1Þ

¼ 100 weeks:

Note that any time period that was repeated was not necessarily on the same dose levels. For
example, the patient represented at each iteration will be steadily on a particular dose level for six
weeks, twice. However, the dose levels for each of these six-week period need not be the same.
Finally, the symptom series was derived by scaling the dose series by a factor of 3, introducing a lag,
and adding a noise term. The a priori lags and the noise terms considered for this set of simulations
were the same as the ones considered for the previous simulation study (corresponding to Table 1).
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Figure 3 shows an example of a pair of the series generated with a lag of two weeks between them
and a noise terms of 0:5 �Nð0, 1Þ. More detailed R codes used to generate the two series in Figure 3
is given below:

xx  sample c 0, 0:5, 1:0, 1:5, 2:0, 2:5, 3ð Þ, 20, replace ¼ Tð Þ # dose levels

yy  sample c rep c 4, 5, 6ð Þ, 2ð Þ, rep c 3, 5, 7ð Þ, 2ð Þ, rep c 2, 5, 8ð Þ, 2ð Þ, c 0, 10ð Þð Þð Þ #time periods

zz  0:5 � rnorm 20ð Þfor i in 1 : length xxð Þð Þf

for i in 1 : length xxð Þð Þf

if i ¼¼ 1ð Þ dd  rep xx 1½ �, yy 1½ �ð Þ; ee  rep zz 1½ �, yy 1½ �ð Þ
� �

if i 4 1ð Þ dd  c dd, rep xx i½ �, yy i½ �ð Þð Þ; ee  c ee, rep zz i½ �, yy i½ �ð Þð Þ
� �

g

dd 1 : 4½ �  3

dose  c dd 3 : 100½ �, dd 1 : 2½ �ð Þ þ 0:0025 � rnorm 100ð Þ # setting lag of 2 weeks

symps  dd � 3 þ ee þ 0:5 � rnorm 100ð Þ # adding the noise term 0:5 � N 0, 1ð Þ

The results from this simulation study is given in Table 2. In this case, the tkCCA performs
perfectly for all the lags and noise terms considered. That is, the method identifies the lag correctly
100% of all the 10, 000 iterations for each lag and noise term. When the lag between the two series is
20 weeks, the performance lowers to approximately 99% for a noise term of 3:5 �Nð0, 1Þ; such a
fluctuation in symptoms is highly unrealistic.

For the above two simulations studies, either the symptoms series were scaled by a factor of 1/3 to
get the dose series, or the dose series were scaled by a factor of 3 to get the symptom series. In order
to see whether the results depended on scale factors, we ran simulations with scale factors of 1/2 and

0 20 40 60 80 100

0
2

4
6

8
10

0 20 40 60 80 100

0
1

2
3

4
sleveL s

motp
my

S
do

se
 in

 m
g

Figure 3. Simulated plot of symptoms and adherence levels for a patient (with a hypothetical brain disorder) with

low fluctuations of adherence: Univariate time series example.
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1/4 (or correspondingly 2 and 4, respectively). The results obtained (not shown here) were very
similar to those in Tables 1 and 2.

3.2 Multivariate time series example

In this section, we illustrate the tkCCA method for multivariate time series examples. We generated
time series for symptoms and adherence levels (dose in mg) for 30 hypothetical patients. Each of the
30 time series were generated by adding Gaussian noise to the univariate time series illustrated in
Figure 1 in section 3.1. The lag between the two sets of time series was again 2 weeks. As in the
univariate case, the goal of the analysis was to check whether the tkCCA identifies the lag correctly.

The simulated multivariate time series for symptoms and adherence levels are shown in Figure 4,
top and bottom panels respectively. As in the univariate case, the lags that we considered for the
tkCCA method, equations (7) to (10) are

�25, � 24, � 23, . . . , 0, . . . , 23, 24 and 25:

The correlogram based on the absolute values of �ð�Þ in equation (11) is shown in Figure 5. As in
the univariate case, the peak of the correlogram is at a lag of two weeks, and so, indeed the tkCCA
method detects the lag correctly in the multivariate example also.

As in the univariate case, we conducted Monte Carlo simulations for the multivariate case to
check whether the performance of the tkCCA method depended on lag or the noise term. As in the
above example, we used a sample size of 30. That is, at each Monte Carlo iteration there were 30
times series of symptom measurements and 30 time series of the dose measurements, generated in a
manner similar to the above example. The lags that were set a priori and the noise terms introduced
for the dose series were the same as in the simulations done for the univariate case. Additionally, in
the multivariate case, we considered different scenarios obtained by varying the proportion of the
sample with any particular noise term. So, first we considered scenarios where all the 30 dose series
had a fixed variance for the noise term, selected from

0:252, 0:502, 1:002 or 1:502:

Then we also considered scenarios where the variance of the noise term was not constant across
the 30 samples. For example, we considered a scenario where 50% of the sample had 0:25 �Nð0, 1Þ
as the noise term, 33% of the sample had 0:50 �Nð0, 1Þ as the noise term, and 17% of the sample had
1:00 �Nð0, 1Þ as the noise term. All other scenarios that we considered are listed in the first two
columns of Table 3. The performance of the tkCCA for various noise scenarios and lags are also

Table 2. Performance of the univariate tkCCA in scenarios similar to Figure 3.

Lag ! 2 4 6 10 15 20

Noise term #

0.25*N(0,1) 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

0.50*N(0,1) 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

1.00*N(0,1) 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

1.50*N(0,1) 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
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shown in Table 3. When the noise term was kept constant across all the sample, the performance was
perfect or near perfect – in all such cases, the a priori set lag was identified correctly by the method
100% (or nearly 100%) of the 10,000 iterations. However, interestingly enough, the performance of
the method was far from perfect when we mixed the noise terms among the samples. In such
scenarios, this poor performance worsened as the a priori set lag increased. For example, in the
scenario where 50%, 33% and 17% of the sample had 0:25 �Nð0, 1Þ, 0:50 �Nð0, 1Þ and
1:00 �Nð0, 1Þ as the noise terms, respectively, the performance was 99.7% when the lag was 4,
but it decreased substantially to 72.4% when lag was set to 6, and worsened to 49% when the lag
was 20.

After finding the poor performance of the multivariate tkCCA in certain scenarios mentioned
above and listed in Table 3, we considered an alternate strategy for the multivariate case to see
whether it improved the performance. The alternate strategy was to find the lag between the dose
and symptom series for each patient separately, considering them as a pair of univariate time series
as in the previous section, and then take median of all the 30 lags found as an estimate of the overall
lag for the sample. We present the results for this alternate strategy only in the scenarios where the
performance of the first strategy was poor. The performance based on this alternate strategy, shown
in parenthesis in Table 3, was near perfect (near 100%).

Time series used in all the simulations done in this subsection so far were similar to the ones seen
in Figure 1, where the dose series fluctuated very rapidly. Finally, we also evaluated the performance
of the tkCCA via simulations in samples (of size 30), where the time series were similar to the ones
shown in Figure 3. The lags and noise term scenarios were the same as in Table 3. The performance
of the multivariate tkCCA in all scenarios was very good for this set of simulations, as seen in
Table 4.
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Figure 4. Simulated plot of symptoms and levels for hypothetical patients: Multivariate time series example.
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The poor performance of the tkCCA seen in some of the scenarios above could be either because
those scenarios were not realistic or could be because of inherent limitation of the method itself.
However, to be on the safer side, and also since we saw markedly better results by analyzing the
sample as separate pairs of univariate time series and taking median of the lags among all patients,
we recommend this alternate strategy for clinical applications of the tkCCA.

The complete R codes used for the illustration of the tkCCA method in this section are available
upon request from the corresponding author.

4 The tkCCA versus alternate analytic methods for adherence

Having presented the new method, the tkCCA, and evaluated its performance in the previous
section, we consider in more detail why the new method would be better than certain other
currently existing methods that could be employed to study the effects of non-adherence. Our
basic arguments are essentially the same as in MacCallum et al. (2002) paper,9 but adapted to the
examples that we considered in the previous section.

Consider the symptom and dose time series that we looked in subsection 3.1 and plotted in
Figure 1. The Pearson product moment correlation, r, between the two time series is 0.37 and the
corresponding two-sided p-value based on a t-statistic obtained using the formula
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Figure 5. Correlogram from the tkCCA analysis for Figure 4.
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t ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 2

1� r2

r
, n ¼ sample size,

is 0.0002 (t-statistic¼ 3.93). If we now dichotomize the dose series using a median split and use a
t-test to compare the mean symptom scores between the two dose categories, we get the t-statistic
equal to 1.81 and p-value equal to 0.0737. The correlation after dichotomization using a biserial
correlation coefficient was 0.18. Clearly, there is a substantial loss of effect size due to
dichotomization, which in turn affected the test of statistical significance. The t-statistic dropped

Table 3. Performance of the multivariate tkCCA in scenarios similar to Figure 1.

Lag ! 2 4 6 10 15 20

Noise term # Noise proportion #

0.25*N(0,1) 100%

0.50*N(0,1) 0%

1.00*N(0,1) 0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

1.50*N(0,1) 0%

0.25*N(0,1) 0%

0.50*N(0,1) 0%

1.00*N(0,1) 100% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

1.50*N(0,1) 0%

0.25*N(0,1) 50%

0.50*N(0,1) 33%

1.00*N(0,1) 17% 100.0% 99.7% 72.4% 42.3% 50.7% 48.9%

1.50*N(0,1) 0% (100.0%) (99.4%) (100.0%) (100.0%)

0.25*N(0,1) 50%

0.50*N(0,1) 17%

1.00*N(0,1) 33% 100.0% 99.9% 70.7% 43.4% 51.1% 48.7%

1.50*N(0,1) 0% (99.6%) (99.5%) (99.5%) (99.5%)

0.25*N(0,1) 50%

0.50*N(0,1) 0%

1.00*N(0,1) 33% 99.8% 99.7% 66.0% 41.9% 50.0% 46.5%

1.50*N(0,1) 17% (99.5%) (99.2%) (100.0%) (100.0%)

0.25*N(0,1) 50%

0.50*N(0,1) 0%

1.00*N(0,1) 17% 100.0% 99.8% 67.8% 42.1% 50.0% 45.2%

1.50*N(0,1) 33% (100.0%) (99.7%) (99.6%) (100.0%)

0.25*N(0,1) 0%

0.50*N(0,1) 0%

1.00*N(0,1) 100% 100.0% 100.0% 100.0% 100.0% 100.0% 99.9%

1.50*N(0,1) 0%

0.25*N(0,1) 0%

0.50*N(0,1) 0%

1.00*N(0,1) 0% 99.9% 100.0% 99.9% 99.8% 99.4% 99.5%

1.50*N(0,1) 100%
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from 3.92 prior to dichotomization to 1.81 after, and statistical significance (at 0.05 level) was lost.
This loss of statistical significance can be attributed directly to loss of statistical power. To illustrate
the loss of power, we generated 10,000 pairs of symptom and dose series as in subsection 3.1 and
obtained two p-values at each iteration, one before dichotomization and one after, as in the example
aforesaid. Then we estimated the empirical power at 0.05 significance level by calculating the
proportion of p-values less than 0.05. The empirical power prior to dichotomization was 99.6%
and with a median split dichotomization was 94.1%. For points of dichotomization further away
from the median, the empirical power decreased further. For example, when the split point was at

Table 4. Performance of the multivariate tkCCA in scenarios similar to Figure 3.

Lag ! 2 4 6 10 15 20

Noise term # Noise proportion #

0.25*N(0,1) 100%

0.50*N(0,1) 0%

1.00*N(0,1) 0% 99.7% 99.4% 98.6% 97.5% 97.5% 97.8%

1.50*N(0,1) 0%

0.25*N(0,1) 0%

0.50*N(0,1) 100%

1.00*N(0,1) 0% 99.9% 99.5% 98.9% 98.3% 97.1% 97.7%

1.50*N(0,1) 0%

0.25*N(0,1) 50%

0.50*N(0,1) 33%

1.00*N(0,1) 17% 99.7% 99.3% 98.9% 97.6% 97.6% 97.5%

1.50*N(0,1) 0%

0.25*N(0,1) 50%

0.50*N(0,1) 17%

1.00*N(0,1) 33% 99.7% 99.2% 98.7% 97.4% 97.6% 97.5%

1.50*N(0,1) 0%

0.25*N(0,1) 50%

0.50*N(0,1) 0%

1.00*N(0,1) 33% 99.7% 99.3% 98.7% 97.7% 97.7% 97.6%

1.50*N(0,1) 17%

0.25*N(0,1) 50%

0.50*N(0,1) 0%

1.00*N(0,1) 17% 99.7% 99.2% 98.8% 97.5% 97.5% 97.7%

1.50*N(0,1) 33%

0.25*N(0,1) 0%

0.50*N(0,1) 0%

1.00*N(0,1) 100% 99.8% 99.4% 98.6% 97.7% 96.9% 97.4%

1.50*N(0,1) 0%

0.25*N(0,1) 0%

0.50*N(0,1) 0%

1.00*N(0,1) 0% 99.8% 99.2% 98.2% 97.6% 96.5% 96.9%

1.50*N(0,1) 100%
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the 90th percentile of the dose series at each iteration, the empirical power was 74.5%. Although the
tkCCA and currently used methods are not exactly based on Pearson or biserial correlation, the
reduction in the correlation as seen in the above illustration weakens the efficiency of the methods
based on dichotomized variables.

Our group19,20 and others have used survival analysis and Cox proportional hazards regression
fruitfully to examine the relationship between non-adherence and relapse. Entering adherence as a
time-dependent covariate allows for modeling of variable levels of adherence over time. However,
the need to dichotomize outcome (not-relapsed versus relapsed) is a limitation from both a statistical
and most importantly, from a clinical perspective. For most illnesses, relapse is not an all-or-none
phenomena. Instead, symptom levels increase, sometimes erratically, over time after medication
discontinuation. To distinguish between transient symptom exacerbations and a true persistent
return of symptoms, most investigators set the level of symptoms needed to meet relapse criteria
at a high level. Thus, results for adherence analyses using survival analysis and Cox proportional
hazards regression are often clinically informative regarding return of severe, but not intermediate,
symptom levels, even though these intermediate levels of symptom return are often clinically
important. Figure 6 presents a hypothetical (but realistic) example of the clinical limitations of
relying on dichotomous relapse definitions for capturing clinical outcomes. The patient depicted
experienced several periods of meaningful symptom exacerbations. Some of these triggered family
members to encourage adherence and these efforts resulted in symptom alleviation due to increased
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Figure 6. A typical trajectory of symptom progression. Red line represents a hypothetical symptom score at which

relapse is considered to occur.
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adherence. Eventually, symptom levels reached relapse criteria severity. Conclusions based solely on
the exacerbation that met relapse criteria could be misleading as the relationships between non-
adherence and earlier symptom exacerbations would not be considered.

5 Performance in the presence of missing data

Missing values, which occur even in well-conducted longitudinal studies, can bias the estimates
obtained from such studies. The distribution of the missingness, often called the missingness
mechanism,21,22 is usually classified as three types: Missing Completely at Random (MCAR),
Missing at Random (MAR) and Missing Not at Random (MNAR). If the missingness does not
depend on the outcomes or any covariates (e.g. the patient missed a visit because there was a
hailstorm on the day of the appointment), then the mechanism is MCAR. If the missingness
depends on the covariates and observed outcomes (e.g. the patient drops out of the study for a few
visits after a particular visit when the symptoms were very severe), then the mechanism is MAR. Any
violation of MAR falls under the MNAR category. We will be focusing only onMCAR andMAR as
there are very few, if any, reasonably good options for dealing withmissingness when themechanism is
MNAR. When the mechanism is MCAR, many of the ad hoc methods for imputation such as Last
Observation Carried Forward (LOCF) or Mean Imputation (MeI) would work fine. But, in
longitudinal clinical studies (especially adherence studies), rarely can the missingness be classified as
MCAR. Instead, MAR assumption would be more appropriate for such studies. Under the MAR
assumption, ad hoc imputationmethods typically give very biased estimates, but an approach based on
multiple imputations (MuIs)22 would provide much better (that is, less biased) estimates. In this
section, we explore via simulations the performance of the tkCCA method when missing values are
imputed via LOCF, MeI or MuI methods under the MCAR and MAR mechanisms.

All simulations were based on Monte Carlo methods. We used 10,000 Monte Carlo iterations for
each simulation. We took the same simulated time series with lag 2 given in section 3.1 and at each
Monte Carlo iteration created a new symptoms series and dose series by adding Gaussian white
noise with zero mean and standard deviation equalling 0.25. Thus, the time series at each iteration
had 100 time points as in the original example.

We imputed missing values assuming either a MCAR mechanism or a MAR mechanism. To
simulate missingness under the MCAR mechanism, at each iteration we randomly picked N time
points and made the values to be null (that is, missing) at these time points. For our simulation study,
we considered N ¼ 5, 15, 25, 30, 35, 40, 45, and 50. To simulate the MAR mechanism, we nullified
(that is, set to missing) the value in the time series right after the time point where the value of the
symptom series exceeded a particular threhsold value. One of the cut-off values that we considered
was 13.5. Thus, in this case, for example, at a particular iteration, if symptom level value was above
13.5 (say 14.0) at the 27th time point, then we set the values for the 28th time point to be missing. The
other cut-off values that we considered were 13.0, 12.5, 12.0, 11.5, 11.0, 10.0 and 9.0. The number of
missing values corresponding to the above cut-offs were on the average 4, 9, 14, 16, 19, 22, 32, and 54.

The imputation methods we considered were LOCF, MeI and MuI. LOCF, as the name implies,
imputes missing value by carrying forward the last observed non-missing value. There are a few
variants of MeI for time series. The variant that we considered was the imputation by the mean of
the last observed and the next observed non-missing value. In adherence studies, even if the patient is
not completely adherent to the medication, it is still sometimes possible to have the patient make the
appointment for the other assessments. Sometimes, even when the patient misses the appointment for
a particular visit, by design, there may be other longitudinal variables that may not be missing.
Examples of such variables include family reports or even self-reports by patients, which could be
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collected over the phone or at a later visit. It is in such cases that the MuIs method (MuI) is
particularly useful. MuI works by creating multiple complete data-sets using the joint distribution
of all variables in the imputation model. Estimates are obtained for each of these complete data-sets
obtained via imputation, and the final estimate is obtained as the average of all the estimates. For our
simulations, we created five complete data-sets usingMuI. R package amelia23 was used for MuI. For
the MuI model, we created two non-missing longitudinal variables sr (for self-report) and fam for
family assessment or family report which were somewhat related to the positive symptoms scores
(before assigning missing values) at each Monte Carlo Iteration by using the following code in R:

sr  pos:symps � 3=2ð Þ þ 2:5 � rnorm 100ð Þ

fam  pos:symps � 5=4ð Þ þ 3:5 � rnorm 100ð Þ

Results from the Tables 5 and 6 show that tkCCA performs quite well with the two ad hoc
methods, LOCF and MeI, if the missing value mechanism is MCAR. Among the two, MeI has a
slight edge over LOCF. Under the MCAR assumption, with LOCF, tkCCA identifies the lag
correctly more than 90% of the time even when approximately 35% of the data is missing; with
MeI, it identifies the lag accurately more than 90% of the time even when approximately 50% of the
data are missing. Hence, based on our simulations, under the MCAR assumption it does not seem to
be necessary to use MuIs.

Table 6. Missing value mechanism: MCAR, imputation method: Mean Imputation.

No. of Percent Mean lag SD MSE

missing values correct

N¼ 5 100.00 2.0000 0.0000 0.0000

N¼ 15 100.00 2.0000 0.0000 0.0000

N¼ 25 100.00 2.0000 0.0000 0.0000

N¼ 30 99.95 1.9995 0.0224 0.0005

N¼ 35 99.74 1.9976 0.0509 0.0026

N¼ 40 98.96 1.9916 0.1016 0.0104

N¼ 45 96.72 1.9788 0.1799 0.0328

N¼ 50 93.83 1.9629 0.2456 0.0617

Table 5. Missing value mechanism: MCAR, imputation method: LOCF.

No. of missing values Percent correct Mean lag SD MSE

N¼ 5 100.00 2.0000 0.0000 0.0000

N¼ 15 99.98 2.0002 0.0141 0.0002

N¼ 25 99.25 2.0075 0.0863 0.0075

N¼ 30 96.70 2.0330 0.1786 0.0330

N¼ 35 92.88 2.0712 0.2572 0.0712

N¼ 40 85.27 2.1473 0.3544 0.1473

N¼ 45 74.82 2.2518 0.4341 0.2518

N¼ 50 60.07 2.3993 0.4898 0.3993
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As expected, under the MAR assumption, the performance of the ad hoc methods are as not good
as it is under the MCAR assumption (Tables 7–9), although we have to note that they still perform
reasonably well when the proportion of missing values is approximately 25% or less. As the
proportion of missing values increases beyond 25%, the performance of the LOCF and MeI

Table 7. Missing value mechanism: MAR, imputation method: LOCF.

Cut-off

Mean no. of missing values Percent correct

Mean lag SD MSE

> 13.5 4 100.00 2.0000 0.0000 0.0000

> 13.0 9 99.98 2.0002 0.0141 0.0002

> 12.5 14 99.82 2.0014 0.0548 0.0030

> 12.0 16 98.87 2.0094 0.1154 0.0134

> 11.5 19 95.24 2.0402 0.2396 0.0590

> 11.0 22 91.44 2.0509 0.3174 0.1033

> 10.0 32 88.14 2.0809 0.4445 0.2041

> 9.0 54 27.48 2.7006 0.4841 0.7252

Table 8. Missing value mechanism: MAR, imputation method: mean imputation.

Cut-off

Mean no. of missing values Percent correct

Mean lag SD MSE

>13.5 4 100.00 2.0000 0.0000 0.0000

>13.0 9 99.92 1.9994 0.0283 0.0008

>12.5 14 98.43 1.9827 0.1319 0.0177

>12.0 16 98.23 1.9817 0.1475 0.0221

>11.5 19 97.79 1.9873 0.1246 0.0157

>11.0 22 95.20 2.0056 0.2190 0.0480

>10.0 32 84.47 2.1389 0.3688 0.1553

>9.0 54 27.48 2.7006 0.4841 0.7252

Table 9. Missing value mechanism: MAR, imputation method: multiple imputation.

Cut-off

Mean no. of missing values Percent correct

Mean lag SD MSE

>13.5 4 100.00 2.0000 0.0000 0.0000

>13.0 9 99.92 1.9998 0.0282 0.0008

>12.5 14 99.77 1.9999 0.0480 0.0023

>12.0 16 99.53 2.0005 0.0686 0.0047

>11.5 19 98.24 1.9931 0.1380 0.0191

>11.0 22 95.76 1.9746 0.2130 0.0460

>10.0 32 94.65 1.9624 0.3191 0.1032

>9.0 54 84.15 1.7848 0.6823 0.5118
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methods worsens quite rapidly. Based on our simulations, MuIs is clearly the method of choice for
the tkCCA if the assumption is MAR and the proportion of missing values is greater than 25%.

6 Real data example

In this section, we illustrate the application of the tkCCA to a real data example. Medication non-
adherence (either total refusal of medication or taking only part of prescribedmedication) is common in
all branches of medicine among patients requiring prolonged maintenance treatment.24–26 Our example
presents data on the effects of medication non-adherence by patients with a first episode of
schizophrenia-spectrum disorder. We focused upon the effects of non-adherence on the severity of
psychotic symptoms (also known as positive symptoms), one of the core symptoms of
schizophrenia.27,28

Data are from one treatment arm (the antipsychotic risperidone prescribed using a flexible dosing
schedule) of a longitudinal study of first episode schizophrenia-spectrum disorders funded by the
National Institute of Mental Health, USA. Twenty-seven subjects who responded to their randomly
assigned risperidone medication within 16 weeks of starting initial treatment were eligible to be
continued on their successful medication for a total treatment period of 3 years. Follow-up data
were censored at the time that subjects left their randomly assigned treatment for any reason.
Subjects were encouraged to remain on the risperidone dose associated with their acute response
to treatment during the maintenance treatment phase of the study. The data were collected on actual
(as opposed to prescribed) doses of medication taken. The total amount of risperidone taken during
a period of interest was divided by the length of the period to obtain an average daily dose taken for
that period. For this analysis, we examined psychotic symptom levels and risperidone dose taken
using a monthly time frame. Because we wished to examine maintenance treatment issues, we set the
baseline for the analyses as the study week at which each subject met a priori criteria for response
from their initial psychotic episode. We imputed for missing values in each of the individual time
series by interpolating the values at the neighboring time points. The time series for psychotic
symptoms and risperidone dose are shown in Figure 7. We analyzed the sample as separate pairs
of univariate time series to estimate lag for each patient using the univariate tkCCA method and
took the median of these lags to be the estimate of the lag for the overall sample. The lags that we
considered for this analysis were 0, 4, 8, 12 up to 100 weeks.

The lag estimate for the overall sample was obtained as 24 weeks. This suggests that, on the
average, psychotic symptoms would reappear around 6 months as the average medication dose
taken decreases due to partial or full non-adherence from the dose that produced response of the
symptoms of the initial illness episode. Leave-one-out cross validation (LOOCV) method, by leaving
out the data from one patient at a time, was employed to estimate the precision of the above lag
estimate. LOOCV gave a standard deviation of 6.9 for the lag estimate. Also, 91% of the iterations
in the LOOCV method showed the lag estimate to be 24.

7 Conclusion

We presented the temporal kernel canonical correlation analysis (tkCCA) method developed by
Bie�mann and colleagues and showed how it can be utilized to answer certain interesting questions
in adherence studies. The tkCCA is an extension of the Canonical Correlation Analysis for a set of
time series with non-instantaneous coupling. We used simulations to generate univariate and
multivariate time series corresponding to symptoms and adherence levels in patients with a
hypothetical brain disorder, and illustrated how the tkCCA correctly finds the lag between the
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two sets of times series. Thus, for example, the tkCCA may be used as an analytical tool to predict
the number of weeks that takes for the symptoms of a patient to relapse when his or her adherence
falls off from the optimal response dose. We also examined the performance of the tkCCA under the
MCAR and MAR missing value mechanisms with imputations methods such as LOCF, MeI, and
MuIs. The tkCCA with LOCF or MeIs performed quite well under MCAR assumption but
performed poorly under the MAR assumption. Nevertheless, under the MAR assumption, the
tkCCA with MuIs performed reasonably well. Further, we applied the tkCCA to a real data
example of psychotic symptoms and dose levels obtained from a study based on subjects with a
first episode of schizophrenia, schizophreniform or schizoaffective disorder on risperidone
treatment, and showed that for the subjects in this study, on the average, the re-appearance of
the psychotic symptoms as the adherence levels falls off was at about 6 months.

One limitation of the tkCCA is the computational time taken for running the method since it
involves inversion of a large matrix as part of a generalized eigenvalue problem. However,
computational burden is not forbiddingly high. For any iteration in our simulations, it never
took more than 2minutes to run the tkCCA on a standard PC. As processor speeds increase in
the future, this would be less of a limitation.

Another limitation of the tkCCA method is that it assumes a constant lag between the two time
series considered. In medicine, disease progression may change the time lag between events. For
example, relapse off treatment may occur faster as patients have an illness longer. The tkCCA
method in its current format is not capable of dealing with such situations. Extension of the
tkCCA method to allow time varying lags will be an area of future research.
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Figure 7. Plot of positive symptoms (that is, psychotic symptoms) and adherence levels for patients with first

episode of a schizophrenia-spectrum disorder treated with risperidone: Real data example.
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