motion or alternative modalities. Therapy, occupational therapy, spasticity management such as orthopaedic surgery, physical changes in motion and gait before and after interventions such as orthopaedic surgery, physical therapy, occupational therapy, spasticity management or alternative modalities. The resulting information allows us to objectify analysis and dynamic electromyography, we record interact when they are in motion. Via seven high-resolution cameras, we mathematically quantify the motion of a person in real time. Skeletal renderings and graphs generated by an animation computer program allow us to examine the activity of the muscles and joint angles during movement.

Kinematics

By tracking anatomically placed reflective markers with seven different cameras, we mathematically quantify the motion of a person in real time. Skeletal renderings and graphs generated by an animation computer program allow us to examine the activity of the muscles and joint angles during movement.

Kinetics

Through force plates in the floor, we measure ground reaction forces, the amount of pressure applied against the foot as it touches the ground. We also examine the power generated at the joints. This is an important tool in comparing healthy and abnormal gait.

Dynamic Electromyography

16 channels of surface EMG data measure muscle activity in real time, differentiating the action of each muscle and determining its contribution to disability.

"It’s one of the most intelligent and scientifically-generated treatment programs available for movement disorders."—Dr. Charles Spero

Through our research efforts, we study and devise treatment protocols for conditions ranging from cerebral palsy to multiple sclerosis. Our results are shared through presentations, lectures, courses and peer-reviewed publications.

Future research projects include:

- An investigation of balance: Injury prevention through the prediction and avoidance of falls.
- An examination of the effects of total joint replacement on the other joints of the body.
- A study of the effects of spinal fusion on mobility after surgery.

As an internationally recognized teaching hospital, our goal is to educate the next generation of human motion scientists and clinicians.

Motion Analysis Benefits Adults and Children With a Variety of Orthopaedic Problems

Neuromuscular Disorders

- Cerebral Palsy
- Spina Bifida
- Stroke
- Multiple Sclerosis
- Balance Disorders
- Congenital Abnormalities
- Peripheral Nerve Injuries
- Brain & Spinal Cord Tumors
- Traumatic Brain & Spinal Cord Injury

Bone & Joint Disorders

- Sports Injuries
- Joint Replacement
- Amputees/Prosthetic Function
- Joint Injuries Affecting Gait & Posture

Using a state-of-the art Vicon Motion Analysis System, we study how different parts of the body interact when they are in motion. Via seven high-speed MX-13 cameras, digital video, force plate analysis and dynamic electromyography, we record normal and pathological motion in three dimensions. The resulting information allows us to objectively changes in motion and gait before and after interventions such as orthopaedic surgery, physical therapy, occupational therapy, spasticity management or alternative modalities.

Charles Spero, MD, Medical Director, is internationally renowned for his work with cerebral palsy, club foot and trauma patients. Clinical Associate Professor of Orthopaedic Surgery and Director of Pediatric Orthopaedics at SUNY Downstate Medical Center, Dr. Spero is a member of the Pediatric Orthopaedic Society of North America, the American Academy of Orthopaedic Surgeons and the American Academy of Cerebral Palsy and Developmental Medicine. He has authored several textbooks and has had articles published in The Journal of Bone & Joint Surgery, the Journal of Pediatric Orthopaedics and the Journal of Orthopaedic Trauma. After earning his medical degree from George Washington University, Dr. Spero completed his residency in orthopaedic surgery at Lenox Hill Hospital and a fellowship in pediatric orthopaedic surgery at the Hospital for Special Surgery.

Ellen Godwin, PT, PhD, PCS, Clinical Director, earned her Bachelor’s Degree in Physical Therapy at Hunter College, her Master’s in Physical Therapy with a specialization in pediatrics at Long Island University, and her Doctorate in Physical Therapy at Nova Southeastern University in Ft. Lauderdale. Dr. Godwin has conducted workshops and given presentations across the country on topics such as spasticity management; gait analysis and surgical planning in cerebral palsy; the use of BOTOX in children; and physical activity and nutrition for individuals with developmental disabilities. She has also offered her expertise in an advisory capacity, consulting on cerebral palsy, motor disabilities, Down syndrome and physical therapy services for children with neuromuscular and orthopaedic conditions. Dr. Godwin is Adjunct Associate Professor in the Division of Physical Therapy at Nova Southeastern University and is a member of the Gait and Clinical Movement Analysis Society and the American Academy of Cerebral Palsy and Developmental Medicine.