PERSISTENCE OF A "SUBACUTE WITHDRAWAL SYNDROME"
FOLLOWING CHRONIC ETHANOL INTAKE

HENRI BEGLEITER and BERNICE PORJESZ
Department of Psychiatry, S.U.N.Y., Downstate Medical Center, Brooklyn, New York 11203 (U.S.A.)

The critical determinants in the development of alcohol addiction are unknown, and the specific nature of the addictive process remains a matter of conjecture. In recent years, however, a number of investigators have succeeded in producing physical dependence on alcohol in different animal species. These various studies have been thoroughly reviewed [1-8]. Comprehensive behavioral rating scales for signs of physical dependence have been developed for the mouse [4, 5], for the rat [6], for monkeys [7], and for man [8]. While there has been considerable progress in developing quantitative behavioral techniques for the assessment of withdrawal, there have been few systematic attempts to examine the physiological correlates of withdrawal from ethanol.

As the grossly observable behavioral signs of withdrawal presumably reflect central nervous system (CNS) hyperexcitability, a number of electrophysiological studies have been conducted in humans and have been reviewed by Begleiter and Platz [9]. Since that review of the literature, a number of investigators have used the promising technique of recording evoked brain potentials from scalps of alcoholic patients. In 1974, Begleiter et al. used the recovery function of somatosensory evoked potentials to examine changes in brain excitability of alcoholics during withdrawal from alcohol [10]. A recovery function was determined every morning (ten hours after the last drink), during three days of baseline, four days of alcoholization, and the four days subsequent to withdrawal from alcohol. The findings indicated a progressive increase of brain excitability starting approximately ten hours after the last drink and reaching asymptote with the first day of total alcohol withdrawal. These results support the hypothesis of increased CNS excitability during withdrawal, and strongly indicate that the degree of CNS hyperexcitability increased with each additional day of alcohol intake. Our findings of increased voltages in the late components of the evoked brain potentials in man following withdrawal have been confirmed by Jarvilehto et al. [11], Coger et al. [12], Wagman et al. [13], Lelord et al. [14], and Pfefferbaum and Roth [15].

Coger et al. [12] found that alcoholics in withdrawal manifested higher visual evoked potential voltage (P100-N140 component) than normal. In addition, they reported that alcoholics who had been abstinent from alcohol for three to four weeks also exhibited electrophysiological hyperexcitability.
364

Similar findings were obtained by Wagman et al. [13], who found that some alcoholics, detoxified for 7 - 21 days, manifested increased amplitudes of visual evoked potentials. More recently, Pfefferbaum and Roth [15] reported increased P3 amplitudes to auditory stimuli presented to chronic alcoholics abstinent for a period of three weeks. Lelord et al. [14] were able to demonstrate that alcoholics abstinent from alcohol for ten days were more responsive to phantom light than normal controls. The incidence of emitted potentials was higher in alcoholics than in normals. The authors concluded that these findings are indicative of CNS hyperexcitability and attributed this to a deficit in cortical inhibitory mechanisms.

For the past several years, in our laboratory, we have systematically studied the electrophysiological concomitants of withdrawal following the cessation of chronic alcohol intake in animals. Begleiter and Coltrera [16] reported that withdrawal from ethanol subsequent to chronic intake resulted in changes in evoked brain potentials suggestive of CNS hyperexcitability. Furthermore, it was reported that these electrophysiological indices reflected hyperexcitability lasting for a period of at least 24 hours subsequent to withdrawal from ethanol. In a subsequent experiment, Porjesz et al. [17] found that the neurophysiological responses of post-addicted rats to challenge doses of alcohol were readily distinguishable from those of naive animals. More recently, Begleiter and Porjesz [18] examined the persistence of brain hyperexcitability following chronic alcohol exposure in rats. Evoked potentials were recorded from implanted electrodes in experimental (alcohol) and control (water) rats. The experimental rats were intubated daily for 14 days with progressively increasing quantities of 20% alcohol (3 - 8 g/kg), while the control animals received an equivalent amount of water in the same fashion. Beginning 4.5 hours after the last dose of alcohol via intubation, visual evoked potentials were sampled every half-hour up to eight hours, and again 24 - 27 hours after withdrawal. All experimental animals manifested their greatest brain hyperexcitability seven to eight hours after alcohol withdrawal. Following two weeks of abstinence, half of the experimental rats and half of the controls received an alcohol challenge dose (2 g/kg, intraperitoneally), while the remaining animals received the same challenge dose after five weeks. The results indicated that rats previously exposed to alcohol for a period of two weeks show a substantial increase in CNS hyperexcitability during the period of withdrawal. These findings are quite consistent with our previous data and are in full agreement with findings of other investigators using behavioral indices of withdrawal.

These findings indicate that a state of CNS hyperexcitability persists long after the removal of alcohol. These CNS changes appear to be long-lasting and can best be observed subsequent to the administration of a challenge dose of alcohol. In additional experiments from our laboratory [19], we have observed a significant relationship between the length of exposure to, and quantity of, alcohol and the persistence of these CNS aberrations.

More recently we conducted electrophysiological studies in monkeys (Macaca radiata) to determine which specific brain sites are involved in the persistence of this neural hyperexcitability. Animals were implanted with recording sites. Experimental animals were implanted for a period of 30 days, while the equivalent amount of isocaloric s with 2.0 ml of Poly-vid-sol multiplied the 30-day period. Evoked brain potentials were recorded from the last day of intubation (every hour thereafter for 22 hours were maintained under standard conditions), and evoked potentials were again recorded for 24 hours. Monkeys were intubated with a solution, and evoked potentials were again recorded for 24 hours. The results of this study indicated that the increase in evoked potential. These electrophysiological changes in neural hyperexcitability were shown in humans and obtained in animals.

It should be noted that these changes in specific brain sites. Our results demonstrate changes in hyperexcitability formation, hippocampus, etc. At other sites, such as the substantia nigra, we did not observe changes in electrophysiological responses of these control animals. The experiments indicate that which persists for several weeks. Taken together, these data in humans and animals persist long after the removal of alcohol, and the absence of gross neurological changes in different areas of the brain. This latent CNS hyperexcitability syndrome or withdrawal syndrome, exposure to ethanol.

Our findings suggest that CNS hyperexcitability persists for a long period of removal of ethanol. Until recently, it was not readily amenable to treatment. In recent years, several investigators have reported the physiological disturbances of these CNS abnormalities. The long-lasting physiological changes in the CNS are due to the persistent increase in neuronal excitability, which may contribute to the development of withdrawal symptoms and other complications associated with alcohol dependence.
who found that decreased amplitudes of brain waves and blood flow to chronic alcoholics [4] were able to demonstrate that withdrawal from chronic alcohol [16] in chronic intake resulted in NS hyperexcitability. Physiological indices reflected this phenomenon in rats reported by Yaffe et al. [17] and by Jaffe et al. [18] on rats of naive animals. The persistence of brain wave amplitudes in rats. Evoked potentials of alcohol withdrawal (alcohol) and abstinence daily for 14 days (3-8 g/kg), while the abstinence was the same. Intubation of rats resulted in a significant increase in neural hyperexcitability for 24 hours following a challenge dose of alcohol. It is quite obvious that the electrophysiological changes reflect significant increases in neural hyperexcitability for 24 hours following a challenge dose of alcohol. This suggests that the neural hyperexcitability is present in the absence of gross convulsive behavior and is manifested selectively in different areas of the CNS. The latent CNS hyperexcitability may well be considered a part of a protracted subacute withdrawal syndrome, which readily becomes reactivated by re-exposure to alcohol.

Our findings suggest that physical dependence involves CNS alterations which persist for long periods of time subsequent to the administration and removal of alcohol. Until recent years, these alterations were quite unspecified and not readily amenable to laboratory investigations. However, in the last few years, several investigators have been able to isolate and study a wide spectrum of physiological disturbances which persist and may take the form of residual symptomatology of the withdrawal syndrome. These long-lasting physiological disturbances may be considered to be a form
of memory. The time course of development, duration and mechanisms of such an agent-induced "addiction memory" are at present unknown.

It is quite plausible that the residual withdrawal syndrome may in some way contribute to an increased risk of returning to alcohol use [21, 22]. Recently DeNoble and Begleiter [23] studied the effects of prior alcohol exposure on alcohol self-administration in monkeys. We reported that previously exposed animals self-injected significantly more alcohol during the first two alcohol test days than naive animals did; thereafter, the self-injection rates of the two groups were approximately the same. It should be noted that the prior exposure of our animals to alcohol occurred four months before the beginning of the experiment. In general, these data suggest that long-term CNS changes caused by chronic exposure to alcohol may be more critical in the susceptibility of the ex-addicted organism to re-addiction rather than in the determination of the total volume consumed over time.

It is quite encouraging to note that a highly objective and quantifiable electrophysiological measure such as evoked brain potentials can be used as a direct index of neural activity in three different species, namely the rat, monkey and man. It is most interesting to realize the striking similarities in neural hyperexcitability manifested in these three species in response to withdrawal from chronic ethanol intake. If we are to develop a meaningful animal analogue of the human withdrawal phenomenon, it is imperative that we use direct objective and quantifiable measures to assess the basic withdrawal aberrations common to several species, including man.

A similar methodological plea must naturally be made for the study of tolerance. It is rather common for investigators interested in the relationship between tolerance and physical dependence to use different dependent variables to assess tolerance and physical dependence. This practice is very much responsible for the divergent results in this area of research. To date there has been no attempt to achieve uniformity of techniques for assessing tolerance and physical dependence. The measurement of tolerance and physical dependence is commonly achieved with the use of gross behavioral measures which are often subject to extraneous influences not at all related to the effects of alcohol. To choose one technique to measure tolerance and another to assess physical dependence will continue to produce incomprehensible findings. The choice of several appropriate dependent variables will not only help us to understand better the relationship between tolerance and physical dependence, but, more important, it will very likely result in a more meaningful understanding and use of ambiguous concepts such as "tolerance" and "physical dependence".

References
ration and mechanisms of present unknown.
swal syndrome may in so
effects of prior alcohol
ey's. We reported that pres-
y more alcohol during the
; thereafter, the self-injection
same. It should be noted
ical, these data suggest that
re to alcohol may be more
anism to re-addiction rather
sumed over time.
objective and quantifiable in
potentials can be used as a
species, namely the rat,
the striking similarities in
species in response to with-
develop a meaningful animal
it is imperative that we use
 cess the basic withdrawal

ily be made for the study of
interested in the relationship
use different dependent vari-
ce. This practice is very much
of research. To date there
aniques for assessing toler-
t of tolerance and physical
of gross behavioral measure-
is not at all related to the
measure tolerance and anoth-
produce incomprehensible
ent variables will not only
ween tolerance and physical
likely result in a more mean-
ccepts such as "tolerance" and